Advertisement

Astronomy Reports

, Volume 56, Issue 12, pp 915–930 | Cite as

Structure of CB 26 protoplanetary disk derived from millimeter dust continuum maps

  • V. V. Akimkin
  • Ya. N. Pavlyuchenkov
  • R. Launhardt
  • T. Bourke
Article

Abstract

Observations of the circumstellar disk in the Bok globule CB 26 at 110, 230, and 270 GHz are presented together with the results of the simulations and estimates of the disk parameters. These observations were obtained using the SMA, IRAM Plateau de Bure, and OVRO interferometers. The maps have relatively high angular resolutions (0.4″-1″), making it possible to study the spatial structure of the gas-dust disk. The disk parameters are reconstructed via a quantitative comparison of observational and theoretical intensity maps. The disk model used to construct the theoretical maps is based on the assumption of hydrostatic and radiative equilibrium in the vertical direction, while the radial surface-density profile is described phenomenologically. The system of equations for the transfer of the infrared and ultraviolet radiation is solved in the vertical direction, in order to compute the thermal structure of the disk. The disk best-fit parameters are derived for the each map and all the maps simultaneously, using a conjugate gradient method. The degrees of degeneracy of the parameters describing the thermal structure and density distribution of the disk are analyzed in detail. All three maps indicate the presence of an inner dust-free region with a diameter of approximately 35 AU, in agreement with the conclusions of other studies. The inclination of the disk is 78°, which is smaller than the value adopted in our earlier study of rotating molecular outflows from CB 26. The model does not provide any evidence for the growth of dust particles above a max ≈ 0.02 cm.

Keywords

Dust Dust Particle Astronomy Report Thermal Structure Disk Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. F. McKee and E. C. Ostriker, Ann. Rev. Astron. Astrophys. 45, 565 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    R. Hueso and T. Guillot, Astron. Astrophys. 442, 703 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    D. Lynden-Bell and J. E. Pringle, Mon. Not. R. Astron. Soc. 168, 603 (1974).ADSGoogle Scholar
  4. 4.
    P. J. Armitage, Ann. Rev. Astron. Astrophys. 49, 195 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Tutukov and Ya. N. Pavlyuchenkov, Astron. Rep. 48, 800 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    K. E. Haisch, Jr., E. A. Lada, and C. J. Lada, Astrophys. J. 553, L153 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Nauka, Moscow, 1969; Israel Program for Scientific Translations, Jerusalem, 1972).Google Scholar
  8. 8.
    M. Janson, M. Bonavita, H. Klahr, and D. Lafreniére, Astrophys. J. 745, 4 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M.K. McClure, E. Furlan, P. Manoj, et al., Astrophys. J. Suppl. Ser. 188, 75 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Andrews and J. P. Williams, Astrophys. J. 631, 1134 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    R. E. Pudritz, R. Ouyed, C. Fendt, and A. Brandenburg, in Protostars and Plantes V, Ed. by B. Reipurth, D. Jewitt, and K. Keil (Univ. Arizona Press, Tucson, 2007), p. 277.Google Scholar
  12. 12.
    J. P. Williams and L. A. Cieza, Ann. Rev. Astron. Astrophys. 49, 67 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    E. E. Mamajek, in Exoplanets and Disks: Their Formation and Diversity, Ed. by T. Usuda, M. Tamura, and M. Ishii, AIP Conf. Ser. 1158, 3 (2009).Google Scholar
  14. 14.
    R. K. Mann and J. P. Williams, Astrophys. J. 725, 430 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    J. Sauter and S. Wolf, Astron. Astrophys. 527, A27 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    K. Wood, New Astron. Rev. 52, 145 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    A. Hetem and J. Gregorio-Hetem, Mon. Not. R. Astron. Soc. 382, 1707 (2007).ADSGoogle Scholar
  18. 18.
    W. Kwon, L.W. Looney, and L. G. Mundy, Astrophys. J. 741, 3 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    D. Madlener, S. Wolf, A. Dutrey, and S. Guilloteau, Astron. Astrophys. (in press); arXiv:1205.4901 [astro-ph] (2012).Google Scholar
  20. 20.
    C. J. Lada, in Star Forming Regions, Ed. by M. Peimbert and J. Jugaku, IAU Symp. 115, 1 (1987).Google Scholar
  21. 21.
    R. Launhardt and A. I. Sargent, Astrophys. J. 562, L173 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    B. Stecklum, R. Launhardt, O. Fischer, et al., Astrophys. J. 617, 418 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    R. Launhardt, Y. Pavlyuchenkov, F. Gueth, et al., Astron. Astrophys. 494, 147 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    J. Sauter, S. Wolf, R. Launhardt, et al., Astron. Astrophys. 505, 1167 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    N. Z. Scoville, J. E. Carlstrom, C. J. Chandler, et al., Publ. Astron. Soc. Pacif. 105, 1482 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    R. J. Sault, P. J. Teuben, and M. C. H. Wright, in Astromonical Data Analysis Software and Systems IV, Ed. by R. A. Shaw, H. E. Payne, and J. J. E. Hayes, ASP Conf. Ser. 77, 433 (1995).Google Scholar
  27. 27.
    P. T. P. Ho, J. M. Moran, and K. Y. Lo, Astrophys. J. 616, L1 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    C. Qi, MIR Cookbook (Harvard-Smithsonian Center for Astrophysics, Cambridge, 2005); https://www.cfa.harvard.ecu/~cqi/mircook.html.Google Scholar
  29. 29.
    S. J. Kenyon and L. Hartmann, Astrophys. J. 323, 714 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    P. D’Alessio, J. Canto, N. Calvet, and S. Lizano, Astrophys. J. 500, 411 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    C. P. Dullemond, G. J. van Zadelhoff, and A. Natta, Astron. Astrophys. 389, 464 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    B. Jonkheid, F. G. A. Faas, G.-J. van Zadelhoff, and E. F. van Dishoeck, Astron. Astrophys. 428, 511 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    Ya. N. Pavlyuchenkov, D. Z. Wiebe, A. M. Fateeva, and T. S. Vasyunina, Astron. Rep. 55, 1 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    R. Andrae, T. Schulze-Hartung, and P. Melchior, arXiv:1012.3754 [astro-ph] (2010).Google Scholar
  35. 35.
    J. Blum, private commun. (2011).Google Scholar
  36. 36.
    J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).ADSCrossRefGoogle Scholar
  37. 37.
    M. J. D. Powell, Comp. J. 7, 155 (1964).MATHCrossRefGoogle Scholar
  38. 38.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).MATHGoogle Scholar
  39. 39.
    A. Dutrey, S. Guilloteau, V. Piétu, et al., Astron. Astrophys. 490, L15 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    J. M. Brown, G. A. Blake, C. Qi, et al., Astrophys. J. 704, 496 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. V. Akimkin
    • 1
  • Ya. N. Pavlyuchenkov
    • 1
  • R. Launhardt
    • 2
  • T. Bourke
    • 3
  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia
  2. 2.Max Planck Institute for AstronomyHeidelbergGermany
  3. 3.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations