Advertisement

Astronomy Reports

, Volume 56, Issue 2, pp 153–165 | Cite as

Development of methods for constructing models for intra-year irregularity in the Earth’s rotation

  • Yu. G. Markov
  • L. V. Rykhlova
  • I. N. SinitsynEmail author
Article
  • 24 Downloads

Abstract

The development of methods for the construction of stochastic, dynamical models for intra-year irregularity of the Earth’s rotation is considered. A correlational model based on harmonically additive and parametrically random, colored and broadband, gravitational-tidal perturbations from the Sun and Moon is developed. One-dimensional and multi-dimensional characteristic functions are found for the case of Gaussian and non-Gaussian colored and broadband fluctuations in the irregularity of the Earth’s rotation. Examples of computer modeling of the irregularity in the Earth’s rotation based on a priori and a posteriori IERS data are presented.

Keywords

Torque Astronomy Report International Earth Rotation Service Tidal Torque International Earth Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. G. Markov, L. V. Rykhlova, and I. N. Sinitsyn, Astron. Rep. 54, 260 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    IERS Annual Report 2000, Ed. by W. Dick and B. Richter, International Earth Rotation and Reference Systems Service, Central Bureau (BKG, Frankfurt amMein, 2001).Google Scholar
  3. 3.
    IERS Annual Report 2002, Ed. by W. Dick and B. Richter, International Earth Rotation and Reference Systems Service, Central Bureau (BKG, Frankfurt amMein, 2003).Google Scholar
  4. 4.
    The NCEP/NCAR Reanalysis Project at the NOAA/ESRL Physical Sciences Division http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml.
  5. 5.
    V. S. Pugachev and I. N. Sinitsyn, Stochastic Systems: Theory and Applications (Logos, Moscow, 2004;World Sci., 2002).Google Scholar
  6. 6.
    I. N. Sinitsyn, Kalman and Pugachev Filters (Logos, Moscow, 2007) [in Russian].Google Scholar
  7. 7.
    C. Audoin and B. Guinot, TheMeasurement of Time (Cambridge Univ., Cambridge, 2001; Tekhnosfera, Moscow, 2002).Google Scholar
  8. 8.
    L. D. Akulenko, Yu. G. Markov, V. V. Perepelkin, and L. V. Rykhlova, Astron. Rep. 52, 590 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. G. Markov and I. N. Sinitsyn, Dokl. Phys. 53, 175 (2008).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    I. N. Sinitsyn, Inform. Primen. 2(1), 35 (2008).Google Scholar
  11. 11.
    Yu. G. Markov and I. N. Sinitsyn, Dokl. Phys. 54, 350 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    I. N. Sinitsyn, Inform. Primen. 3(4), 2 (2009).Google Scholar
  13. 13.
    Yu. G. Markov and I. N. Sinitsyn, Dokl. Phys. 54, 471 (2009).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Yu. G. Markov and I. N. Sinitsyn, Dokl. Phys. 55, 242 (2010).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. G. Markov
    • 1
  • L. V. Rykhlova
    • 2
  • I. N. Sinitsyn
    • 3
    Email author
  1. 1.Moscow Aviation InstituteMoscowRussia
  2. 2.Institute of AstronomyRussian Academy of SciencesMoscowRussia
  3. 3.Institute for Problems in InformaticsRussian Academy of SciencesMoscowRussia

Personalised recommendations