Advertisement

Astronomy Reports

, 53:1079 | Cite as

Semi-permeable wormholes and the stability of static wormholes

  • D. I. Novikov
  • A. G. Doroshkevich
  • I. D. Novikov
  • A. A. Shatskii
Article

Abstract

Physical processes arising when an impermeable wormhole is irradiated by self-gravitating, exotic radiation are considered. It is shown that, in this case, the conditions required for the passage of signals fromanother universe into our own arise only in our Universe, whereas signals cannot pass through the wormhole in the opposite direction. Such wormholes are called semi-permeable. The stability of a static wormhole filled with radial magnetic field and exotic dust with a negative energy density is also considered.

Keywords

Dust Astronomy Report Null Geodesic World Line Negative Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. S. Kardashev, I. D. Novikov, and A. Shatskii, Astron. Zh. 83, 675 (2006) [Astron. Rep. 50, 601 (2006)].Google Scholar
  2. 2.
    N. S. Kardashev, I. D. Novikov, and A. A. Shatskii, Int. J. Mod. Phys. D 16, 909 (2007).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    A. A. Shatskii, Astron. Zh. 84, 99 (2007) [Astron. Rep. 51, 81 (2007)].Google Scholar
  4. 4.
    A. Einstein and N. Rosen, J. Frankl. Inst. 223, 43 (1937).CrossRefGoogle Scholar
  5. 5.
    S. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525 (1957).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. S. Morris and K. S. Thorne, Amer. J. Phys. 56, 395 (1988).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    M. Visser, LorentzianWormholes: fromEinstein to Hawking (AIP, Woodbury, 1995).Google Scholar
  8. 8.
    H. G. Ellis, J. Math. Phys. 14, 104 (1973).CrossRefADSGoogle Scholar
  9. 9.
    V. P. Frolov and I. D. Novikov, Black Hole Physics (Kluwer, Dordrecht, 1998).zbMATHGoogle Scholar
  10. 10.
    Universe or Multiverse, Ed. by B. Carr (Cambridge Univ., Cambridge, 2007).zbMATHGoogle Scholar
  11. 11.
    S. A. Hayward, arXiv:gr-qc/9805019 (1998).Google Scholar
  12. 12.
    S. A. Hayward, arXiv: gr-qc/0110080 (2001).Google Scholar
  13. 13.
    S. A. Hayward, arXiv: gr-qc/0202059 (2002).Google Scholar
  14. 14.
    S. A. Hayward and H. Koyama, arXiv:gr-qc/0406080 (2004).Google Scholar
  15. 15.
    H. Koyama and S.A. Hayward, arXiv: gr-qc/0406113 (2004).Google Scholar
  16. 16.
    A. Shatskii, JETP 104, 743 (2007).CrossRefADSGoogle Scholar
  17. 17.
    E. Babichev, V. Dokuchaev, and Y. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004).CrossRefADSGoogle Scholar
  18. 18.
    E. Babichev, V. Dokuchaev, and Yu. Eroshenko, JETP 100, 528 (2005).CrossRefADSGoogle Scholar
  19. 19.
    S. V. Sushkov, Phys. Rev. D 71, 043 520 (2005).CrossRefGoogle Scholar
  20. 20.
    F. S. N. Lobo, Phys. Rev. D 71, 084 011 (2005).MathSciNetGoogle Scholar
  21. 21.
    F. S. N. Lobo, Phys. Rev. D 71, 124 022 (2005).MathSciNetGoogle Scholar
  22. 22.
    H. Maeda, T. Harada, and B. Carr, arXiv: 0901.1153 [gr-qc] (2009).Google Scholar
  23. 23.
    K. A. Bronnikov and A. A. Starobinsky, arXiv: 0903.5173 [gr-qc] (2009).Google Scholar
  24. 24.
    Hisa-aki Shinkai and S. A. Hayward, arXiv: grqc/0205041 (2002).Google Scholar
  25. 25.
    J. A. Gonzalez, F. S. Guzman, and O. Sarbach, arXiv: gr-qc/0806.1370 (2008).Google Scholar
  26. 26.
    A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskii, arXiv: 0812.0702 [gr-qc] (2009).Google Scholar
  27. 27.
    F. S. N. Lobo, in Classical and Quantum Gravity Research Progress (Nova Sci., 2008), p. 1.Google Scholar
  28. 28.
    S. A. Hayward, arXiv:0903.5438 [gr-qc] (2009).Google Scholar
  29. 29.
    S. Krasnikov, Phys. Rev. D 62, 084 028 (2002).MathSciNetGoogle Scholar
  30. 30.
    S. E. Hong, D. il Hwang, E. D. Stewart, and D. han Yeom, arXiv: 0808.1709 [gr-qc] (2008).Google Scholar
  31. 31.
    D. han Yeom and H. Zoe, arXiv: 0811.1637 [gr-qc] (2008).Google Scholar
  32. 32.
    J. A. Gonzalez and F. S. Guzman, arXiv: 0903.0881 [gr-qc] (2009).Google Scholar
  33. 33.
    M. Kruskal, Phys. Rev. D 119, 1743 (1960).zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    I. D. Novikov, Soobshch. Gos. Astron. Inst. 132, 3 (1964).Google Scholar
  35. 35.
    I. D. Novikov, Soobshch. Gos. Astron. Inst. 132, 43 (1964).Google Scholar
  36. 36.
    I. D. Novikov, Gen. Relat. Gravit. 33, 2259 (2001).zbMATHCrossRefADSGoogle Scholar
  37. 37.
    S. Armendariz-Picon, Phys. Rev. D 65, 104 010 (2002).CrossRefMathSciNetGoogle Scholar
  38. 38.
    J. A. Gonzalez, F. S. Guzman, and O. Sarbach, arXiv:0806.0608 [gr-qc] (2008).Google Scholar
  39. 39.
    A. A. Shatskii, I. D. Novikov, and N. S. Kardashev, Usp. Fiz. Nauk 178, 481 (2008) [Phys. Usp. 51, 457 (2008)].CrossRefGoogle Scholar
  40. 40.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • D. I. Novikov
    • 1
    • 2
  • A. G. Doroshkevich
    • 1
  • I. D. Novikov
    • 1
    • 3
  • A. A. Shatskii
    • 1
  1. 1.Astro Space Center, Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Imperial CollegeLondonUK
  3. 3.Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations