Astronomy Reports

, Volume 51, Issue 7, pp 549–562 | Cite as

The thickness of accretion α-disks: Theory and observations

  • V. F. Suleimanov
  • G. V. Lipunova
  • N. I. Shakura
Article

Abstract

Observations of X-ray binaries indicate substantial half-thicknesses for the accretion disks in these systems (up to h/R ≈ 0.25, where h is the disk half-thickness and R its radius), while standard α accretion disks predict appreciably smaller half-thicknesses. We study the theoretical vertical structure of such disks using two independent numerical methods, and show that their maximum half-thicknesses in the subcritical regime cannot exceed h/R ≈ 0.1. We consider various reasons for the apparent increase in the disk thickness, the most probable of which is the presence of matter above the disk in the form of a hot corona that scatters hard radiation from the central source and inner parts of the disk. As a result, the observed thickness of the disk and the illumination of its outer parts effectively increase. This mechanism can also explain both the optical-to-X-ray flux ratio in these systems and the observed parameters of eclipsing X-ray binaries.

PACS numbers

97.10.Gz 97.80.Jp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  2. 2.
    S. Kato, J. Fukue, and S. Mineshige, Black-Hole Accretion Disks (Kyoto Univ. Press, Kyoto, Japan, 1998).Google Scholar
  3. 3.
    J. Frank, A. King, and D. J. Raine, Accretion Power in Astrophysics (Cambridge Univ. Press, Cambridge, UK, 2002).Google Scholar
  4. 4.
    F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 104, L10 (1981).ADSGoogle Scholar
  5. 5.
    J. Smak, Acta Astron. 34, 161 (1984).ADSGoogle Scholar
  6. 6.
    J. K. Cannizzo, Accretion Disks in Compact Stellar Systems (1993), p. 6.Google Scholar
  7. 7.
    G. Dubus, J.-M. Hameury, and J.-P. Lasota, Astron. Astrophys. 373, 251 (2001).CrossRefADSGoogle Scholar
  8. 8.
    G. V. Lipunova and N. I. Shakura, Astron. Astrophys. 356, 363 (2000).ADSGoogle Scholar
  9. 9.
    G. V. Lipunova and N. I. Shakura, Astron. Zh. 79, 407 (2002) [Astron. Rep. 46, 366 (2002)].Google Scholar
  10. 10.
    F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 106, 34 (1982).ADSGoogle Scholar
  11. 11.
    G. Shaviv and R. Wehrse, Astron. Astrophys. 159, L5 (1986).ADSGoogle Scholar
  12. 12.
    V. F. Suleĭmanov, Pis’ma Astron. Zh. 18, 255 (1992) [Sov. Astron. Lett. 18, 104 (1992)].ADSGoogle Scholar
  13. 13.
    J.-M. Hameury, K. Menou, G. Dubus, et al., Mon. Not. R. Astron. Soc. 298, 1048 (1998).CrossRefADSGoogle Scholar
  14. 14.
    G. Dubus, J.-P. Lasota, J.-M. Hameury, and P. Charles, Mon. Not. R. Astron. Soc. 303, 139 (1999).CrossRefADSGoogle Scholar
  15. 15.
    N. A. Ketsaris and N. I. Shakura, Astron. Astrophys. Trans. 15, 193 (1998).CrossRefADSGoogle Scholar
  16. 16.
    J. K. Cannizzo, Astrophys. J. 385, 94 (1992).CrossRefADSGoogle Scholar
  17. 17.
    R. L. Kurucz, Atlas: A Computer Program for Calculating Model Stellar Etmospheres, SAO Special Report (Smithsonian Astrophys. Obs., Cambridge, 1970).Google Scholar
  18. 18.
    R. Kurucz, Kurucz CD-ROMs (Smithsonian Astrophys. Obs., Cambridge, 1993).Google Scholar
  19. 19.
    V. F. Suleĭmanov, Pis’ma Astron. Zh. 17, 575 (1991) [Sov. Astron. Lett. 17, 245 (1991)].ADSGoogle Scholar
  20. 20.
    A. P. Lightman and D. M. Eardley, Astrophys. J. 187, L1 (1974).CrossRefADSGoogle Scholar
  21. 21.
    N. Shibazaki and R. Hōshi, Progr. Theor. Phys. 54, 706 (1975).CrossRefADSGoogle Scholar
  22. 22.
    N. I. Shakura and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 175, 613 (1976).ADSGoogle Scholar
  23. 23.
    A. V. Mescheryakov, R. A. Likhachev, and N. I. Shakura, Astron. Zh. (2007) (in preparation).Google Scholar
  24. 24.
    N. I. Shakura, Astron. Zh. 49, 921 (1972) [Sov. Astron. 16, 756 (1973)].ADSGoogle Scholar
  25. 25.
    R. J. Tayler, Mon. Not. R. Astron. Soc. 191, 135 (1980).ADSGoogle Scholar
  26. 26.
    N. Grevesse and E. Anders, in Cosmic Abundances of Matter, Ed. by C. J. Waddington (Am. Inst. Phys., 1989), AIP Conf. Proc. 183, 1.Google Scholar
  27. 27.
    Yu. É. Lyubarskiĭ and N. I. Shakura, Pis’ma Astron. Zh. 13, 917 (1987) [Sov. Astron. Lett. 13, 386 (1987)].ADSGoogle Scholar
  28. 28.
    Ya. B. Zel’dovich and N. I. Shakura, Astron. Zh. 46, 225 (1969) [Sov. Astron. 13, 175 (1969)].ADSGoogle Scholar
  29. 29.
    D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978; Mir, Moscow, 1982).Google Scholar
  30. 30.
    R. Narayan and J. E. McClintock, Astrophys. J. 623, 1017 (2005).CrossRefADSGoogle Scholar
  31. 31.
    M. Milgrom, Astron. Astrophys. 67, L25 (1978).ADSGoogle Scholar
  32. 32.
    J. E. McClintock, R. A. London, H. E. Bond, and A. D. Grauer, Astrophys. J. 258, 245 (1982).CrossRefADSGoogle Scholar
  33. 33.
    Z. Ioannou, T. Naylor, A. P. Smale, P. A. Charles, and K. Mukai, Astron. Astrophys. 382, 130 (2002).CrossRefADSGoogle Scholar
  34. 34.
    K. O’Brien, K. Horne, R. I. Hynes, et al., Mon. Not. R. Astron. Soc. 334, 426 (2002).CrossRefADSGoogle Scholar
  35. 35.
    R. I. Hynes, in The Astrophysics of Cataclysmic Variables and Related Objects, Ed. by J.-M. Hameury and J.-P. Lasota (Astron. Soc. Pac., San Francisco, 2005a), Astron. Soc. Pac. Conf. Ser. 330, 237.Google Scholar
  36. 36.
    A. A. Esin, E. Kuulkers, J. E. McClintock, and R. Narayan, Astrophys. J. 532, 1069 (2000).CrossRefADSGoogle Scholar
  37. 37.
    V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, in Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe, Ed. by V. Schoenfelder, G. Lichti, and C. Winkler (European Space Agency, 2004), ESA SP-552, p. 403.Google Scholar
  38. 38.
    R. Popham and R. Di Stefano, Accretion Disks in Supersoft X-ray Sources, Tech. Rep. Smithson. Astrophys. Obs. (Smithson. Astrophys. Obs., Cambridge, 1996).CrossRefGoogle Scholar
  39. 39.
    S. Schandl, E. Meyer-Hofmeister, and F. Meyer, Astron. Astrophys. 318, 73 (1997).ADSGoogle Scholar
  40. 40.
    J. A. de Jong, J. van Paradijs, and T. Augusteijn, Astron. Astrophys. 314, 484 (1996).ADSGoogle Scholar
  41. 41.
    M. Gilfanov and V. Arefiev, astro-ph/0501215 (2005).Google Scholar
  42. 42.
    Ü. Ertan and M. A. Alpar, Astron. Astrophys. 393, 205 (2002).CrossRefADSGoogle Scholar
  43. 43.
    A. R. King and H. Ritter, Mon. Not. R. Astron. Soc. 293, L42 (1998).CrossRefADSGoogle Scholar
  44. 44.
    V. Suleimanov, F. Meyer, and E. Meyer-Hofmeister, Astron. Astrophys. 350, 63 (1999).ADSGoogle Scholar
  45. 45.
    N. G. Bochkarev, R. A. Syunyaev, T. S. Khruzina, et al., Astron. Zh. 65, 778 (1988) [Sov. Astron. 32, 405 (1988)].ADSGoogle Scholar
  46. 46.
    J. Fukue, Publ. Aston. Soc. Jpn. 44, 663 (1992).ADSGoogle Scholar
  47. 47.
    C. T. Cunningham, Astrophys. J. 202, 788 (1975).CrossRefADSGoogle Scholar
  48. 48.
    S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960; Inostrannaya Literatura, Moscow, 1953).Google Scholar
  49. 49.
    A. Laor, H. Netzer, and T. Piran, Mon. Not. R. Astron. Soc. 242, 560 (1990).ADSGoogle Scholar
  50. 50.
    R. I. Hynes, Astrophys. J. 623, 1026 (2005b).CrossRefADSGoogle Scholar
  51. 51.
    M. A. Jimenez-Garate, J. C. Raymond, and D. A. Liedahl, Astrophys. J. 581, 1297 (2002).CrossRefADSGoogle Scholar
  52. 52.
    M. C. Begelman and C. F. McKee, Astrophys. J. 271, 89 (1983).CrossRefADSGoogle Scholar
  53. 53.
    M. de Kool and D. Wickramasinghe, Mon. Not. R. Astron. Soc. 307, 449 (1999).CrossRefADSGoogle Scholar
  54. 54.
    A. Rózańska and B. Czerny, Astron. Astrophys. 360, 1170 (2000).ADSGoogle Scholar
  55. 55.
    F. Meyer, B. F. Liu, and E. Meyer-Hofmeister, Astron. Astrophys. 361, 175 (2000).ADSGoogle Scholar
  56. 56.
    K. A. Miller and J. M. Stone, Astrophys. J. 534, 398 (2000).CrossRefADSGoogle Scholar
  57. 57.
    J. M. Miller, J. Raymond, A. Fabian, et al., Nature 441, 953 (2006).CrossRefADSGoogle Scholar
  58. 58.
    J. Frank, A. R. King, and J.-P. Lasota, Astron. Astrophys. 178, 137 (1987).ADSGoogle Scholar
  59. 59.
    P. J. Armitage and M. Livio, Astrophys. J. 470, 1024 (1996).CrossRefADSGoogle Scholar
  60. 60.
    D. V. Bisikalo, P. V. Kaĭgorodov, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 49, 701 (2005).CrossRefADSGoogle Scholar
  61. 61.
    V. Suleimanov, F. Meyer, and E. Meyer-Hofmeister, Astron. Astrophys. 401, 1009 (2003).CrossRefADSGoogle Scholar
  62. 62.
    N. I. Shakura, N. A. Ketsaris, M. E. Prokhorov, and K. A. Postnov, Mon. Not. R. Astron. Soc. 300, 992 (1998).ADSGoogle Scholar
  63. 63.
    J. M. Bardeen and J. A. Petterson, Astrophys. J. 195, L65 (1975).CrossRefADSGoogle Scholar
  64. 64.
    J. A. Petterson, Astrophys. J. 216, 827 (1977).CrossRefADSGoogle Scholar
  65. 65.
    J. E. Pringle, Mon. Not. R. Astron. Soc. 281, 357 (1996).ADSGoogle Scholar
  66. 66.
    G. I. Ogilvie and G. Dubus, Mon. Not. R. Astron. Soc. 320, 485 (2001).CrossRefADSGoogle Scholar
  67. 67.
    S. H. Lubow, G. I. Ogilvie, and J. E. Pringle, Mon. Not. R. Astron. Soc. 337, 706 (2002).CrossRefADSGoogle Scholar
  68. 68.
    R. Speith, H. Riffert, and H. Ruder, Comput. Phys. Commun. 88, 109 (1995).CrossRefADSGoogle Scholar
  69. 69.
    K. A. Arnaud, in: Astronomical Data Analysis Software and Systems V, Ed. by G. H. Jacoby and J. Barnes (Astron. Soc. Pac., San Francisco, 1996), Astron. Soc. Pac. Conf. Ser. 101, 17.Google Scholar
  70. 70.
    L.-X. Li, E. R. Zimmerman, R. Narayan, and J. E. McClintock, Astrophys. J., Suppl. Ser. 157, 335 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. F. Suleimanov
    • 1
    • 2
  • G. V. Lipunova
    • 3
  • N. I. Shakura
    • 3
  1. 1.Kazan State UniversityKazanRussia
  2. 2.Institute for Astronomy and Astrophysics (IAAT) of the Eberhard-Karls- University of TubingenTubingenGermany
  3. 3.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations