Astronomy Reports

, Volume 50, Issue 12, pp 1001–1012 | Cite as

The diffusional evolution of chemical composition in a solar model

  • V. A. Baturin
  • A. B. Gorshkov
  • S. V. Ayukov


We consider the basic physical processes resulting in a differential, microscopic redistribution of stellar matter, generally known as diffusion. The main effect of diffusion in the solar interior is a segregation of light and heavy elements in the gravitational field. As a result, the abundance of helium and heavy elements in the solar envelope is reduced, while it becomes enriched by hydrogen. We present estimates of the degree of settling for a sequence of evolutionary models via numerical solution of the generalized diffusion equation. The effect of the ion charge (in the approximation of full ionization) on the settling rate is studied in detail. Abundance variations are given for the centers of the models, as well as for the convective envelope of the modern Sun. We analyze the effects of the thermal and concentrational diffusion on the evolution of the chemical-composition profile. Quantitatively, the effect of thermal diffusion is not very large, but it leads to the appearance of new features in the hydrogen-abundance profile, namely, a discontinuity at the base of the convective zone. The effect of concentration diffusion is relatively small, and is appreciable only at the model center at late stages of the evolution, and also close to the base of the convective envelope. All the mechanisms studied are necessary components of a modern model for the internal structure and evolution of the Sun.

PACS numbers

96.60.Jw 68.43.Jk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Ageev, Nonequilibrium Thermodynamics in Questions and Answers (URSS, Moscow, 2001) [in Russian].Google Scholar
  2. 2.
    J. M. Burgers, Flow Equations for Composite Gases (Academic Press, 1969).Google Scholar
  3. 3.
    A. S. Eddington, Internal Constitution of the Stars (Cambridge Univ. Press, Cambridge, 1926), p. 272.zbMATHGoogle Scholar
  4. 4.
    S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Cambridge, 1952; Inostrannaya Literatura, Moscow, 1960).Google Scholar
  5. 5.
    P. D. Noerdlinger, Astron. Astrophys. 57, 407 (1977).ADSGoogle Scholar
  6. 6.
    J. N. Bahcall, M. H. Pinsonneault, and G. J. Wasserburg, Rev. Mod. Phys. 67, 781 (1995).CrossRefADSGoogle Scholar
  7. 7.
    J. Christensen-Dalsgaard, W. Däppen, S. Ajukov, et al., Science 272, 1286 (1996).CrossRefADSGoogle Scholar
  8. 8.
    R. Roussel-Dupre, Astrophys. J. 243, 329 (1981).CrossRefADSGoogle Scholar
  9. 9.
    J. N. Bahcall and A. Loeb, Astrophys. J. 360, 267 (1990).CrossRefADSGoogle Scholar
  10. 10.
    S. I. Braginski, in: Reviews in Plasma Physics, Ed. by M. A. Leontovich (Consultants-Bureau, New York, 1965), Vol. 1, p. 205.Google Scholar
  11. 11.
    G. Michaud and C. R. Proffitt, in IAU Colloq. 137: Inside the Stars, Ed. by W. W. Weiss and A. Baglin (Astron. Soc. Pac., New York, 1993), Astron. Soc. Pac. Conf. Ser. 40 (New York, 1993), p. 137.Google Scholar
  12. 12.
    T. G. Cowling, J. Phys. A 3, 774 (1970).CrossRefADSGoogle Scholar
  13. 13.
    A. A. Thoul, J. N. Bahcall, and A. Loeb, Astrophys. J. 421, 828 (1994).CrossRefADSGoogle Scholar
  14. 14.
    M. Asplund, N. Grevesse, A. J. Sauval, et al., Astron. Astrophys. 417, 451 (2004).CrossRefGoogle Scholar
  15. 15.
    S. V. Ayukov, V. A. Baturin, V. K. Gryaznov, et al., in Equation of State and Phase-Transition in Models of Ordinary Astrophysical Matter (New York, 2004), AIP Conf. Proc. 731, p. 178.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Baturin
    • 1
  • A. B. Gorshkov
    • 1
  • S. V. Ayukov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations