Skip to main content
Log in

Source Localization in an Acoustic Waveguide with Inaccurately Known Parameters Using Matched Processing in the Mode Space

  • ACOUSTIC SIGNAL PROCESSING. COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An adaptive modal MUSIC algorithm is constructed to localize an acoustic source by a vertical array operating under conditions of incomplete information on a waveguide propagation channel . The results of statistical modeling are presented, which demonstrate the probabilities of correct source localization versus the input signal-to-noise ratio and the sample size. The method is validated by its application to the experimental data observed in the Ladoga Lake. It is shown that this method ensures greater stability of the estimation procedure to mismatch between the true and expected signal replica compared to the conventional element-space MUSIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. The corresponding procedure is referred as matched mode processing.

  2. The localization of a source with a central frequency of 2625 Hz (also used in this experiment) using an adaptive lower rank algorithm was considered in [30].

REFERENCES

  1. A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, IEEE J. Oceanic Eng. 18, 401 (1993).

    Article  Google Scholar 

  2. A. G. Sazontov and A. I. Malekhanov, Acoust. Phys. 61 (2), 213 (2015).

    Article  ADS  Google Scholar 

  3. M. Richardson and L. W. Nolte, J. Acoust. Soc. Am. 89 (5), 2280 (1991).

    Article  ADS  Google Scholar 

  4. J. A. Shorey, L. W. Nolte, and J. L. Krolik, J. Comput. Acoust. 2 (3), 285 (1994).

    Article  Google Scholar 

  5. B. F. Harrison, R. J. Vaccaro, and D. W. Tufts, J. Acoust. Soc. Am. 103 (6), 721 (1998).

    Article  Google Scholar 

  6. J. Tabrikian, J. L. Krolik, and H. Messer, J. Acoust. Soc. Am. 101 (1), 241 (1997).

    Article  ADS  Google Scholar 

  7. E. C. Shang, J. Acoust. Soc. Am. 77 (4), 1413 (1985).

    Article  ADS  Google Scholar 

  8. E. C. Shang, C. S. Clay, and Y. Y. Wang, J. Acoust. Soc. Am. 78 (1), 172 (1986).

    Article  ADS  Google Scholar 

  9. E. C. Shang, J. Acoust. Soc. Am. 86 (5), 1960 (1989).

    Article  ADS  Google Scholar 

  10. T. C. Yang, J. Acoust. Soc. Am. 82 (5), 1736 (1987).

    Article  ADS  Google Scholar 

  11. G. R. Wilson, R. A. Koch, and P. J. Vidmar, J. Acoust. Soc. Am. 84 (1), 310 (1988).

    Article  ADS  Google Scholar 

  12. T. C. Yang, J. Acoust. Soc. Am. 85 (1), 146 (1989).

    Article  ADS  Google Scholar 

  13. M. J. Hinich and E. J. Sullivan, J. Acoust. Soc. Am. 85 (1), 214 (1989).

    Article  ADS  Google Scholar 

  14. T. C. Yang, J. Acoust. Soc. Am. 87 (2), 668 (1990).

    Article  ADS  Google Scholar 

  15. T. C. Yang, J. Acoust. Soc. Am. 87 (5), 2072 (1990).

    Article  ADS  Google Scholar 

  16. E. C. Shang and Y. Y. Wang, J. Acoust. Soc. Am. 9 (5), 2285 (1991).

    Article  ADS  Google Scholar 

  17. S. M. Jesus, J. Acoust. Soc. Am. 90 (4), 2034 (1991).

    Article  ADS  Google Scholar 

  18. C. W. Bogart and T. C. Yang, J. Acoust. Soc. Am. 92 (4), 2051 (1992).

    Article  ADS  Google Scholar 

  19. Y.-T. Lin, A. E. Newhall, and J. F. Lynch, J. Acoust. Soc. Am. 131 (2), 1798 (2012).

    Article  ADS  Google Scholar 

  20. T. C. Yang, J. Acoust. Soc. Am. 135 (3), 1218 (2014).

    Article  ADS  Google Scholar 

  21. Robust Adaptive Beamforming, Ed. by J. Li and P. Stoica (Wiley, Hoboken, NJ, 2006).

    Google Scholar 

  22. S. A. Vorobyov, Signal Process. 93 (12), 3264 (2013).

    Article  Google Scholar 

  23. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Fundamentals of the Oceanic Acoustics (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Book  MATH  Google Scholar 

  24. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer, 2012).

    Book  MATH  Google Scholar 

  25. W. A. Kuperman and F. Ingenito, J. Acoust. Soc. Am. 67 (6), 1988 (1980).

    Article  ADS  Google Scholar 

  26. R. O. Schmidt, IEEE Trans. Antennas Propag. 34 (3), 276 (1986).

    Article  ADS  Google Scholar 

  27. V. F. Pisarenko, Geophys. J. R. Astron. Soc. 33 (3), 347 (1973).

    Article  ADS  Google Scholar 

  28. C. L. Byrne, R. T. Brent, C. Feuillade, and D. R. DelBalzo, J. Acoust. Soc. Am. 87 (4), 2493 (1990).

    Article  ADS  Google Scholar 

  29. A. N. Mirkin and L. H. Sibul, J. Acoust. Soc. Am. 95 (2), 877 (1994).

    Article  ADS  Google Scholar 

  30. A. G. Sazontov, I. P. Smirnov, and A. S. Chashchin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 59 (2), 99 (2016).

    Google Scholar 

Download references

Funding

This study was carried out under the state task of the Institute of Applied Physics, Russian Academy of Sciences (project no. 0035–2014–0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sazontov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazontov, A.G., Smirnov, I.P. Source Localization in an Acoustic Waveguide with Inaccurately Known Parameters Using Matched Processing in the Mode Space. Acoust. Phys. 65, 450–459 (2019). https://doi.org/10.1134/S1063771019040171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019040171

Keywords:

Navigation