Acoustical Physics

, Volume 64, Issue 6, pp 678–683 | Cite as

Theory of Acousto-Optic Filtering of Radiation in the Multifrequency Near-Field Zone of a Plane Piezoelectric Transducer

  • V. V. ProklovEmail author
  • Y. G. RezvovEmail author
  • V. A. Podol’skii


A theory of acousto-optic filtering is developed based on Bragg diffraction of a plane light wave in the near field of radiation from an acoustic transducer excited by an electric signal with a discrete frequency spectrum. Approximate solutions to the problem have been considered for various degrees of overlap of neighboring discrete passbands of a multiband acousto-optic filter (MAOF) and for various diffraction efficiencies. Particular cases have shown good agreement between the developed analytical method and numerical calculation for the dynamic transmission function of the MAOF under study. It has been noted that insufficient time resolution leads to detection of an averaged transmission function, which could considerably differ from instantaneous samplings of a dynamic transmission pattern.


anisotropic acousto-optic diffraction multifrequency acousto-optic interaction acousto-optic filtering of radiation 



This study was supported by the Russian Foundation for Basic Research, project no. 16-02-00124-a.


  1. 1.
    Yu. V. Gulyaev, V. V. Proklov, and G. N. Shkerdin, Sov. Phys. Usp. 21, 29 (1978). doi 10.3367/UFNr.0124.197801b.0061ADSCrossRefGoogle Scholar
  2. 2.
    V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, The Physical Principles of Acoustooptics (Radio Svyaz’, Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    A. Korpel, Acoustooptics (CRC, Boca Raton, FL, 1996).Google Scholar
  4. 4.
    S. E. Harris and R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969). doi 10.1364/JOSA.59.000744ADSCrossRefGoogle Scholar
  5. 5.
    T. Yano and A. Watanabe, Appl. Opt. 15, 2250 (1976). doi 10.1364/AO.15.002250ADSCrossRefGoogle Scholar
  6. 6.
    I. C. Chang, Opt. Eng. 20, 206824 (1981). doi 10.1117/12.7972821CrossRefGoogle Scholar
  7. 7.
    V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, Quantum Electron. 39, 353 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. P. Anikin, V. F. Esipov, V. Ya. Molchanov, A. M. Tatarnikov, and K. B. Yushkov, Opt. Spectrosc. 121, 115 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Vainer, V. V. Proklov, Yu. G. Rezvov, and O. D. Sivkova, J. Commun. Technol. Electron. 62, 1152 (2017).CrossRefGoogle Scholar
  10. 10.
    V. V. Proklov, O. A. Byshevskii-Konopko, and V. I. Grigor’evskii, J. Commun. Technol. Electron. 58, 891 (2013).CrossRefGoogle Scholar
  11. 11.
    V. V. Proklov, O. A. Byshevski-Konopko, and A. V. Lugovskoi, Acta Phys. Polon. A 127, 29 (2015). doi 10.12693/APhysPolA.127.29CrossRefGoogle Scholar
  12. 12.
    V. V. Proklov and Yu. G. Rezvov, Opt. Spectrosc. 124, 121 (2018). doi 10.21883/OS.2018.01.45367.178-17ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, Quantum Electron. 43, 542 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    O. A. Byshevski-Konopko, V. V. Proklov, A. L. Filatov, A. V. Lugovskoi, and E. M. Korablev, Phys. Proc. 73, 251 (2015). doi 10.1016/j.phpro.2015.09.166ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Proklov, O. A. Byshevski-Konopko, and A. L. Filatov, Tech. Phys. Lett. 41, 987 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Proklov, O. A. Byshevski-Konopko, A. L. Filatov, A. V. Lugovskoi, and Y. V. Pisarevsky, J. Phys.: Conf. Ser. 737, 012060 (2016). doi 10.1088/1742-6596/737/1/012060Google Scholar
  17. 17.
    O. A. Byshevskii-Konopko, V. V. Proklov, A. V. Lugovskoi, and E. M. Korablev, in Proceedings of the 6th International Conference on Photonics and Informational Optics (NIYaU MIFI, Moscow, 2017), p. 20.Google Scholar
  18. 18.
    V. V. Proklov, in Proceedings of the 13th School on Acousto-Optics and Applications, Moscow, June 19–23, 2017, p. 44.Google Scholar
  19. 19.
    K. B. Yushkov and V. Ya. Molchanov, J. Biomed. Opt. 22, 066017 (2017). doi 10.1117/1.JBO.22.6.066017ADSCrossRefGoogle Scholar
  20. 20.
    V. Ya. Molchanov and K. V. Yushkov, Opt. Express 22, 15668 (2014). doi 10.1364/OE.22.015668ADSCrossRefGoogle Scholar
  21. 21.
    P. Wang and Z. Zhang, Appl. Opt. 56, 1647 (2017). doi 10.1364/AO.56.001647ADSCrossRefGoogle Scholar
  22. 22.
    D. L. Hecht, IEEE Trans. Sonics Ultrasonics 24, 7 (1977). doi 10.1109/T-SU.1977.30905CrossRefGoogle Scholar
  23. 23.
    E. A. D’yakonov, V. B. Voloshinov, and N. V. Polikarpova, Opt. Spectrosc. 118, 166 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    E. A. Dyakonov and V. B. Voloshinov, J. Commun. Technol. Electron. 59, 456 (2014).CrossRefGoogle Scholar
  25. 25.
    V. I. Balakshy and S. N. Mantsevich, Acoust. Phys. 58, 549 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    N. V. Polikarpova, P. V. Mal’neva, and V. B. Voloshinov, Acoust. Phys. 59, 291 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    V. I. Balakshy, A. S. Voloshin, and V. Ya. Molchanov, Opt. Spectrosc. 117, 801 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Zakharov and V. B. Voloshinov, Tech. Phys. 61, 1377 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of SciencesFryazinoRussia
  2. 2.Mendeleev University of Chemical TechnologyNovomoskovskRussia

Personalised recommendations