Acoustical Physics

, Volume 64, Issue 6, pp 750–759 | Cite as

Experimental Determination of Acoustic and Vibroacoustic Characteristics of Multilayer Composite Panels

  • A. Ya. ZverevEmail author
  • V. V. Chernyh


Comprehensive studies have been carried out on determining the acoustic and vibroacoustic characteristics of multilayer polymer composite panels of variable thickness installed in the opening between reverberation chambers. The acoustic insulation and acoustic excitability of the panels excited by a diffuse acoustic field, as well as their modal density, radiation loss factor, and total loss factor, have been determined for excitation with a vibration exciter in a wide frequency range. It has been shown that the panel characteristics have a universal character. Simple empirical relations have been derived to describe these characteristics. The measured vibroacoustic characteristics of the panels made of a polymer composite material have been compared to those of a traditional stiffened fuselage panel.


acoustic insulation acoustic radiation loss factor composite panel 



The authors are grateful to S.A. Mikhailov (Tupolev Kazan Technical University) for help in manufacturing test composite panels and to Prof. V.F. Kopiev for support. The study was carried out with financial support of the Ministry of Science and Higher Education of the Russian federation, (unique identifier of the agreement RFMEFI62818X0011).


  1. 1.
    S. P. Savin, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 14 (4) (2), 686 (2012).Google Scholar
  2. 2.
    A. A. Tkachev, in Struggle against Noise and Sound Vibration (MDNTP, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    B. M. Efimtsov and L. A. Lazarev, Acoust. Phys. 58 (4), 404 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    A. Ya. Zverev, Acoust. Phys. 62 (4), 478 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    Aviation Acoustics, Part 2: Noise in Cabins of Passenger Aircrafts, Ed. by A. G. Munin (Mashinostroenie, Moscow, 1986) [in Russian].Google Scholar
  6. 6.
    R. M. Christensen, Mechanics of Composite Materials (Wiley-Interscience, New York, 1979).Google Scholar
  7. 7.
    D. Chronopoulos, B. Troclet, M. Ichchou, and J. P. Lainé, Composites, Part B 43 (4), 1837 (2012).CrossRefGoogle Scholar
  8. 8.
    D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, Appl. Acoust., No. 74, 1394 (2013).Google Scholar
  9. 9.
    S. Ghinet, N. Atalla, and H. Osman, J. Acoust. Soc. Am. 118 (2), 774 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    S. Ghinet, N. Atalla, and H. Osman, J. Sound Vib. 289 (4–5), 745 (2006).Google Scholar
  11. 11.
    T. Wang, S. Li, S. Rajaram, and S. R. Nutt, J. Vib. Acoust., Trans. ASME 132 (1), 0110041 (2010).Google Scholar
  12. 12.
    N. Atalla, S. Ghinet, and H. Osman, in Proc. 18th Int. Congress on Acoustics (ICA) (Kyoto, 2004).Google Scholar
  13. 13.
    B. M. Efimtsov, A. Ya. Zverev, and V. V. Chernykh, Uch. Zap. TsAGI 39 (4), 82 (2008).Google Scholar
  14. 14.
    S. A. Borisov, A. Yu. Golubev, A. Ya. Zverev, L. Ya. Kudisova, and V. B. Kuznetsov, in Proc. 9th Scientific and Technical Conference on Aviation Acoustics (Moscow, 1989), p. 436.Google Scholar
  15. 15.
    GOST (State Standard) No. 27296-2012: Buildings and Constructions. Methods for Measurement of Sound Insulation of Protecting Designs (Standartinform, Moscow, 2014).Google Scholar
  16. 16.
    R. H. Lion and G. Maidanik, AIAA J. 2 (6), 1015 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. Crocker and A. J. Price, J. Sound Vib. 9 (3), 469 (1969).Google Scholar
  18. 18.
    B. M. Efimtsov and A. A. Tkachev, in Proc. 8th Scientific and Technical Conference on Air Acoustics (Moscow, 1990), p. 146.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Central Aerohydrodynamic Institute (TsAGI), Moscow Research Center, ul. Radio 17MoscowRussia

Personalised recommendations