Acoustical Physics

, Volume 64, Issue 6, pp 760–773 | Cite as

Numerical Modeling of the Influence of the Relative Positions of a Propeller and Pylon on Turboprop Aircraft Noise

  • V. A. Titarev
  • G. A. FaranosovEmail author
  • S. A. Chernyshev
  • A. S. Batrakov


The influence of the position of the pylon on the characteristics of propeller noise has been studied as applied to environmental noise calculations for future aircraft. Components related to propeller noise itself and to a signal reflected from a pylon have been separated in the overall noise produced by the propeller–pylon system at the blade passing frequency, and the interference of these signals has been investigated. A numerical method has been developed based on matching of the following two computational blocks: a rotating domain in the immediate vicinity of the propeller and the outer static domain comprising the pylon. A noise calculation procedure by the integral Ffowcs Williams and Hawkings method has been implemented with the use of the Green’s function for the convective wave equation.


propeller noise aeroacoustics numerical simulation sound signal interference 



The authors are grateful to I.V. Belyaev for his help with the acoustic processing of steady-state calculations. The research has been carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [13] and partially supported by a grant from the RF government pursuant to Decree no. 220 “On Measures to Attract Leading Scientists to Russian Higher Professional Education Institutions,” agreement no. 14.Z50.31.0032. The part of the study related to calculating single propeller noise for steady blade loads was carried out under the State Assignment of the Ministry of Education and Science of the Russian Federation (no. 9.1577.2017/4.6).


  1. 1.
    I. V. Belyaev, V. F. Kopiev, and V. A. Titarev, Uch. Zap. TsAGI 45 (2), 78 (2014).Google Scholar
  2. 2.
    A. J. Gil, J. Bonet, J. Silla, and O. Hassan, Int. J. Numer. Methods Biomed. Eng., No. 26, 770 (2010).Google Scholar
  3. 3.
    R. Sevilla, A. J. Gil, and M. Weberstadt, Comput. Struct., No. 181, 89 (2017).Google Scholar
  4. 4.
    M. Dumbser and M. Kaser, J. Comput. Phys. 221 (2), 693 (2007).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Dumbser, M. Kaser, V. A. Titarev, and E. F. Toro, J. Comput. Phys. 226, 204 (2007).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Venkatakrishnan, in Proc. 31st Aerospace Science Meeting and Exhibit (Reno, NV, January 11–14, 1993), Paper No. AIAA 93-0880.Google Scholar
  7. 7.
    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed. (Springer, 2009).CrossRefzbMATHGoogle Scholar
  8. 8.
    H. van der Ven and J. J. W. van der Vegt, J. Comput. Phys. 191 (41–42), 4747 (2002).Google Scholar
  9. 9.
    I. S. Men’shov and Y. Nakamura, in Proc. 6th Int. Symposium on CFD (Lake Tahoe, NV, 1995), Vol. 2, p. 815.Google Scholar
  10. 10.
    A. M. Wissink, A. S. Lyrintzis, and R. C. Strawn, AIAA J. 34 (11), 2276 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, Vychisl. Metody Program. 13 (3), 110 (2012).Google Scholar
  12. 12.
    V. A. Titarev, S. V. Utyuzhnikov, and A. V. Chikitkin, Comput. Math. Math. Phys. 56 (11), 1919 (2016).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Otkrytye Sist., No. 7, 36 (2012).Google Scholar
  14. 14.
    A. Najafi-Yazdi, G. A. Bres, and L. Mongeau, Proc. R. Soc. A 467, 144 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev, Comput. Fluids 88, 165 (2013).CrossRefGoogle Scholar
  16. 16.
    M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J. Aeroacoust. 4 (3–4), 213 (2005).CrossRefGoogle Scholar
  17. 17.
    V. F. Kop’ev, M. Yu. Zaitsev, N. N. Ostrikov, S. L. Denisov, S. Yu. Makashov, V. A. Anikin, and V. V. Gromov, Acoust. Phys. 62 (6), 741 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    B. Magliozzi, in Aeroacoustics of Flight Vehicles: Theory and Practice, Vol. 1: Noise Sources, Ed. by H. Hubbard (NASA Langley Research Center, Hampton, VA, 1991), p. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Titarev
    • 1
    • 2
  • G. A. Faranosov
    • 2
    • 3
    Email author
  • S. A. Chernyshev
    • 2
  • A. S. Batrakov
    • 4
  1. 1.Federal Research Center “Computer Science and Control”, Russian Academy of SciencesMoscowRussia
  2. 2.Central Aerohydrodynamic Institute (TsAGI), Moscow Research ComplexMoscowRussia
  3. 3.Perm National Research Polytechnic UniversityPermRussia
  4. 4.Kazan National Research Technical University n.a. A.N. Tupolev, KazanRussia

Personalised recommendations