Advertisement

Acoustical Physics

, Volume 64, Issue 6, pp 673–677 | Cite as

Transformation of Hybrid Transverse Elastic Waves in Nonuniform Micropolar Media

  • A. F. Kabychenkov
  • F. V. LisovskiiEmail author
  • E. G. Mansvetova
  • G. V. Arzamastseva
PHYSICAL ACOUSTICS
  • 20 Downloads

Abstract

The features of propagation of coupled hybrid transverse elastic waves in a nonuniform dense micropolar medium with spatial dispersion are studied. It is shown that in the region of the medium corresponding to the intersection point of unperturbed dispersion curves of elastic waves of different types, efficient transformation of a shear wave into a rotational wave or vice versa may occur.

Keywords:

hybridization of spectra coupled waves rotational waves shear waves micropolar media transformation of wave types spatial dispersion 

Notes

ACKNOWLEDGMENTS

The authors are grateful to O.A. Byshevskii-Konopko for help and useful advice.

REFERENCES

  1. 1.
    E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    M. I. Rabinovich and D. I. Trubetskov, Introduction into Theory of Oscillations and Waves (Regulyarnaya i Haoticheskaya Dinamika, Izhevsk, 2000) [in Russian].Google Scholar
  3. 3.
    S. E. Miller, Bell Syst. Tech. J. 33 (3), 661 (1954).CrossRefGoogle Scholar
  4. 4.
    J. R. Pierce, J. Appl. Phys. 25 (2), 179 (1954).ADSCrossRefGoogle Scholar
  5. 5.
    A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-18 (7), 383 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    A. W. Snyder, J. Opt. Soc. Am. 62 (11), 1267 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    D. Marcuse, Bell Syst. Tech. J. 50 (6), 1791 (1971).CrossRefGoogle Scholar
  8. 8.
    A. Yariv, IEEE J. Quantum Electron. QE-9 (9), 919 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston of Canada, 1971; Vysshaya Shkola, Moscow, 1983).Google Scholar
  10. 10.
    A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, Berlin, 1983; Radio i Svyaz’, Moscow, 1987).Google Scholar
  11. 11.
    A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley and Sons, New York, 1984; Mir, Moscow, 1987).Google Scholar
  12. 12.
    A. A. Barybin, Electrodynamics of Waveguide Structures (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  13. 13.
    I. E. Kuznetsova, B. D. Zaitsev, A. A. Teplykh, and I. A. Borodina, Acoust. Phys. 53 (1), 64 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    S. I. Burkov, O. P. Zolotova, B. P. Sorokin, and K. S. Aleksandrov, Acoust. Phys. 56 (5), 644 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    E. A. Turov and Yu. P. Irkhin, Fiz. Met. Metalloved. 3 (1), 15 (1956).Google Scholar
  16. 16.
    A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Zh. Eksp. Teor. Fiz. 35 (7), 228 (1958).Google Scholar
  17. 17.
    C. Kittel, Phys. Rev. 110 (4), 836 (1958).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    E. G. Spencer and R. LeCraw, Phys. Rev. Lett. 1 (7), 241 (1958).ADSCrossRefGoogle Scholar
  19. 19.
    H. Matthews and R. LeCraw, Phys. Rev. Lett. 8 (10), 397 (1962).ADSCrossRefGoogle Scholar
  20. 20.
    B. Lüthi, Phys. Lett. 3 (6), 285 (1963).ADSCrossRefGoogle Scholar
  21. 21.
    B. A. Auld, J. Appl. Phys. 31 (9), 1642 (1960).ADSCrossRefGoogle Scholar
  22. 22.
    E. Schlömann, J. Appl. Phys. 35 (1), 159 (1964).ADSCrossRefGoogle Scholar
  23. 23.
    E. Schlömann and R. I. Joseph, J. Appl. Phys. 35 (1), 167 (1964).ADSCrossRefGoogle Scholar
  24. 24.
    E. Schlömann and R. I. Joseph, J. Appl. Phys. 35 (8), 1642 (1964).CrossRefGoogle Scholar
  25. 25.
    E. Cossérat and F. Cossérat, Théorie des Corps Déformables (Hermann et Fils, Paris, 1909).zbMATHGoogle Scholar
  26. 26.
    V. I. Erofeev, Vychisl. Mekh. Sploshnykh Sred 2 (4), 5 (2009).Google Scholar
  27. 27.
    W. Nowacki, Theory of Asymmetric Elasticity (Pergamon Press, Oxford, 1986).zbMATHGoogle Scholar
  28. 28.
    A. C. Eringen, Microcontinuum Field Theories. 1. Foundations and Solids (Springer, New York, 1999).CrossRefzbMATHGoogle Scholar
  29. 29.
    R. D. Gauthier and N. E. Jahsman, J. Appl. Mech. 33 (5), 717 (1981).Google Scholar
  30. 30.
    R. Kumar and S. Choudhary, Proc. Indian. Acad. Sci. Earth Planet. Sci. 111 (2), 133 (2002).ADSGoogle Scholar
  31. 31.
    S. Forest, in Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2001), p. 1715.Google Scholar
  32. 32.
    M. A. Kulesh, V. P. Matveenko, and I. N. Shardakov, Acoust. Phys. 52 (2), 186 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    S. H. Sargsyan and A. H. Sargsyan, Acoust. Phys. 57 (4), 473 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    S. H. Sargsyan and A. H. Sargsyan, Acoust. Phys. 59 (2), 148 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    M. Romeo, Mech. Res. Commun. 63, 33 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    I. A. Abbas and R. Kumar, J. Vib. Control 20 (11), 1663 (2014).MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. I. Potapov, I. S. Pavlov, and S. A. Lisina, Acoust. Phys. 56 (4), 588 (2010).ADSCrossRefGoogle Scholar
  38. 38.
    A. F. Kabychenkov and F. V. Lisovskii, J. Exp. Theor. Phys. (JETP) 123 (2), 254 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    A. B. Migdal, Qualitative Methods for Quantum Theory (Nauka, Moscow, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. F. Kabychenkov
    • 1
  • F. V. Lisovskii
    • 1
    Email author
  • E. G. Mansvetova
    • 1
  • G. V. Arzamastseva
    • 1
  1. 1.Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Fryazino Branch)FryazinoRussia

Personalised recommendations