Acoustical Physics

, Volume 64, Issue 2, pp 190–195 | Cite as

Experimental Testing of High-Accuracy Underwater Range-Finding Technology

  • Yu. N. Morgunov
  • V. V. Bezotvetnikh
  • A. V. Burenin
  • E. A. Voitenko
  • A. A. Golov
Ocean Acoustics. Hydroacoustics
  • 5 Downloads

Abstract

The aim of the study whose results are discussed in this paper was to conduct experimental and numerical research on improving a high-accuracy method, developed by the authors, of positioning underwater objects. For this, experimental testing of an improved range-finding technology was carried out, based on the inclusion into the measuring scheme of a block that can measure and monitor the sound velocity on the shelf area of a track connecting a source of navigation signals and an a receiver system imitator consisting of autonomous underwater apparatus. In addition, under natural conditions, we implemented a scenario in which range-finding data was provided to an autonomous underwater apparatus carrying out a mission in the water area at a distance of 300 km from the source of navigation signals using technical tools for controlling variability of the sound velocity on the shelf. A specific example was used to test the acoustic range-finding technology on a track with complex hydrological and bathymetric conditions, and an estimate was obtained for the accuracy of measuring distances during a 4 h drift of the autonomous underwater apparatus imitator.

Keywords

hydroacoustics sound propagation pseudorandom signals underwater navigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Matvienko, L. V. Kiselev, A. V. Inzartsev, and O. Yu. L’vov, Podvodnye Issled. Robototekh., No. 2 (22), 4 (2016).Google Scholar
  2. 2.
    Yu. N. Morgunov, A. A. Tagil’tsev, V. V. Bezotvetnykh, A. V. Burenin, and A. A. Golov, RF Patent No. 2469346, Byull. Izobret., No. 34 (2012).Google Scholar
  3. 3.
    Yu. N. Morgunov, V. V. Bezotvetnykh, A. E. Borodin, A. V. Burenin, and E. A. Voitenko, Fundam. Prikl. Gidrofiz. 9 (3), 80 (2016).Google Scholar
  4. 4.
    V. V. Bezotvetnykh, A. V. Burenin, Yu. N. Morgunov, and Yu. A. Polovinka, Acoust. Phys. 55 (3), 376 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    J. B. Bowlin, J. L. Spiesberger, T. F. Duda, and L. E. Freitag, Ocean Acoustical Ray-Tracing Software RAY, Woods Hole Oceanographic Technical Report WHOI-93-10 (Woods Hole Oceanographic Institution, Woods Hole, MA, 1993).Google Scholar
  6. 6.
    A. V. Burenin, V. V. Bezotvetnykh, and Yu. N. Morgunov, in Proc. Int. Scientific Conference “Modern Technologies and Polytechnic Education Development” September 19–23, 2016, Vladivostok (Far Eastern Federal Univ., Vladivostok, 2016), pp. 655–659 [in Russian].Google Scholar
  7. 7.
    Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, and E. A. Voitenko, Acoust. Phys. 62 (3), 350 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, and A. A. Golov, Akust. Zh. 63 (6), 646 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. N. Morgunov
    • 1
  • V. V. Bezotvetnikh
    • 1
  • A. V. Burenin
    • 1
  • E. A. Voitenko
    • 1
  • A. A. Golov
    • 1
  1. 1.Il’ichev Pacific Oceanological Institute, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations