Skip to main content
Log in

An Interferometric Method for Detecting a Moving Sound Source with a Vector-Scalar Receiver

  • Ocean Acoustics. Hydroacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper discusses the conditions imposed on the spectrum of an emitted signal for which the interferometric method of detecting a moving sound source in shallow water is applicable for vector-scalar receivers. It is shown that a normalized spectrogram representing a two-dimensional Fourier transform of the interferometric pattern is identical for all four acoustic field components and combinations thereof. Results of a field experiment in which a vector-scalar receiver was applied are presented. The interference immunity of the method is considered for different field components in the case of isotropic interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Ianniello, IEEE Signal Process. Mag. 15 (4), 27–40 (1998).

    Google Scholar 

  2. G. S. Malyshkin and G. B. Sidel’nikov, Acoust. Phys. 60 (5), 570–587 (2014).

    Article  ADS  Google Scholar 

  3. A. G. Sazontov and A. I. Malekhanov, Acoust. Phys. 61 (2), 213–230 (2015).

    Article  ADS  Google Scholar 

  4. S. D. Chuprov, in Acoustics of the Ocean. State-of-the-Art (Nauka, Moscow, 1982), pp. 71–82 [in Russian].

    Google Scholar 

  5. V. M. Kuz’kin, G. A. Lyakhov, and S. A. Pereselkov, Phys. Wave Phenom. 18 (3), 196–222 (2010).

    Article  ADS  Google Scholar 

  6. V. M. Kuz’kin, M. V. Kutsov, and S. A. Pereselkov, Phys. Wave Phenom. 21 (2), 139–151 (2013).

    Article  ADS  Google Scholar 

  7. K. L. Cocrell and H. Smidt, J. Acoust. Soc. Am. 127 (5), 2780–2789 (2010).

    Article  ADS  Google Scholar 

  8. D. Rouseff and L. M. Zurk, J. Acoust. Soc. Am. Express Lett. 130 (2), 76–81 (2011).

    Article  ADS  Google Scholar 

  9. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, Acoust. Phys. 62 (5), 559–574 (2016).

    Article  ADS  Google Scholar 

  10. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, Acoust. Phys. 63 (4), 449–461 (2017).

    Article  ADS  Google Scholar 

  11. T. N. Besedina, G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, Phys. Wave Phenom 23 (4), 292–303 (2015).

    Article  ADS  Google Scholar 

  12. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, Phys. Wave Phenom. 24 (4), 310–316 (2016).

    Article  ADS  Google Scholar 

  13. E. F. Orlov and G. A. Sharonov, Sound Waves Interference in the Ocean (Dal’nauka, Vladivostok, 1998) [in Russian].

    Google Scholar 

  14. Ocean Acoustic Interference Phenomena and Signal Processing, San Francisco, CA, May 1–3, 2001, AIP Conference Proceedings, Vol. 621, Ed. by W. A. Kuperman and G. L. D’Spain (American Institute of Physics, Melville, NY, 2002)

  15. V. A. Gordienko, Vector-Phase Methods in Acoustics (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  16. M. D. Smaryshev, Acoust. Phys. 51 (4), 477–478 (2005).

    Article  ADS  Google Scholar 

  17. G. L. D’Spain, J. C. Luby, G. R. Wilson, and R. A. Gramann, J. Acoust. Soc. Am. 120 (1), 171–185 (2006).

    Article  Google Scholar 

  18. V. A. Gordienko, E. L. Gordienko, N. V. Krasnopistsev, and V. N. Nekrasov, Acoust. Phys. 54 (5), 670–679 (2008).

    Article  ADS  Google Scholar 

  19. V. A. Shchurov, V. P. Kuleshov, and A. V. Cherkasov, Acoust. Phys. 57 (6), 851–856 (2011).

    Article  ADS  Google Scholar 

  20. G. M. Glebova, G. N. Kuznetsov, and O. E. Shimko, Acoust. Phys. 59 (4), 453–463 (2013).

    Article  ADS  Google Scholar 

  21. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 62 (2), 194–201 (2016).

    Article  ADS  Google Scholar 

  22. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 62 (3), 319–327 (2016).

    Article  ADS  Google Scholar 

  23. N. I. Belova, G. N. Kuznetsov, and A. N. Stepanov, Acoust. Phys. 62 (3), 328–338 (2016).

    Article  ADS  Google Scholar 

  24. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of Ocean Acoustics (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Book  MATH  Google Scholar 

  25. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and I. V. Kaznacheev, Phys. Wave Phenom. 25 (2), 156–163 (2017).

    Article  ADS  Google Scholar 

  26. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  27. G. A. Grachev and G. N. Kuznetsov, Akust. Zh. 31 (2), 266–268 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kaznacheev.

Additional information

Original Russian Text © I.V. Kaznacheev, G.N. Kuznetsov, V.M. Kuz’kin, S.A. Pereselkov, 2018, published in Akusticheskii Zhurnal, 2018, Vol. 64, No. 1, pp. 33–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaznacheev, I.V., Kuznetsov, G.N., Kuz’kin, V.M. et al. An Interferometric Method for Detecting a Moving Sound Source with a Vector-Scalar Receiver. Acoust. Phys. 64, 37–48 (2018). https://doi.org/10.1134/S1063771018010104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018010104

Keywords

Navigation