Acoustical Physics

, Volume 63, Issue 4, pp 433–448 | Cite as

Sound field in a shallow-water arctic-type waveguide with a bottom containing a gas-saturated sediment layer

  • V. A. Grigoriev
  • V. G. Petnikov
  • A. V. Shatravin
Ocean Acoustics. Hydroacoustics
  • 29 Downloads

Abstract

We have analyzed the possibility of mode description of a sound field in a shallow-water Arctic-type waveguide with a bottom containing a gas-saturated sediment fluid layer lying on an elastic half-space (permafrost). It has been established that the modes, including quasimodes, calculated using Pekeris cuts, yield the best description of the field in the water layer at small distances from the sound source on the order of 1–10 waveguide depths. Calculations of propagation losses in the waveguide for a thickness of the sediment layer comparable to or larger than the length of a sound wave in the sediments have shown that the sea bottom behaves like a homogeneous fluid half-space. Propagation losses sharply increase as the sound speed in the sediments approaches the sound speed in water. We have proposed a technique for estimating the sound speed in the sediment layer based on analysis of the attenuation curves of the sound field components corresponding to different sums of waveguide modes.

Keywords

shallow water fluid-elastic bottom discrete mode spectrum quasimodes Pekeris cut sound attenuation sound speed in sediments gas saturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Rokos, D. A. Kostin, and A. G. Dlugan, in Sedimentological Processes and Evolution of Marine Ecosystems in the Conditions of Marine Superglacial. Book 1 (Kolsk. Nauchn. Tsentr, Apatity, 2001), pp. 40–51.Google Scholar
  2. 2.
    S. I. Rokos, Inzhenernaya Geologiya, no. 4, 22–28 (2008).Google Scholar
  3. 3.
    N. A. Shpolyanskaya, Izvestiya Komi Nauchn. Tsentra Ural. Otd. Ros. Akad. Nauk, no. 3, 105–111 (2014).Google Scholar
  4. 4.
    D. S. Yashin and B. I. Kim, Geologiya Nefti i Gaza, no. 4, 25–29 (2007).Google Scholar
  5. 5.
    N. N. Komissarova and A. V. Furduev, Acoust. Phys. 50 (5), 571–574 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Acoust. Phys. 61 (1), 85–95 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).MATHGoogle Scholar
  8. 8.
    B. G. Katsnel’son and V. G. Petnikov, Acoustics of the Shallow Sea (Nauka, Moscow, 1997) [in Russian].Google Scholar
  9. 9.
    G. V. Alekseev, Normal Wave Method in Underwater Scoustics (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  10. 10.
    V. A. Grigor’ev and V. G. Petnikov, Acoust. Phys. 62 (6), 700–716 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    C. L. Pekeris, Geol. Soc. Amer. Mem. 27, 1–117 (1948).CrossRefGoogle Scholar
  12. 12.
    C. L. Pekeris, in Propagation of the Sound in the Ocean, Ed. by L. M. Brekhovskikh, (InLit, Moscow, 1951) [in Russian], pp. 48–156.Google Scholar
  13. 13.
    N. S. Ageeva and V. D, Krupin, Sov. Phys. Acoust. 31 (1), 1–4 (1985).Google Scholar
  14. 14.
    A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 59 (6), 674–685 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer-Verlag, New York, 2012).CrossRefMATHGoogle Scholar
  16. 16.
    D. K. Mellinger and C. W. Clark, Appl. Acoust. 67 (11-12), 1226–1242 (2006).CrossRefGoogle Scholar
  17. 17.
    L. M. Brekhovskikh and Yu. P. Lysanov, Theoretocal Foundations of the Ocean Acoustics (Nauka, Moscow, 2007) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Grigoriev
    • 1
  • V. G. Petnikov
    • 2
  • A. V. Shatravin
    • 3
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations