Advertisement

Acoustical Physics

, Volume 63, Issue 1, pp 33–44 | Cite as

Acoustics and hydrodynamics of a drop impact on a water surface

  • Yu. D. Chashechkin
  • V. E. Prokhorov
Physical Acoustics

Abstract

Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.

Keywords

impact pulse underflow gas cavity detachment resonance acoustic packet emission instability 

References

  1. 1.
    A. Prosperetti and H. N. Oguz, Annu. Rev. Fluid Mech. 25, 577 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    S. T. Thoroddsen, T. G. Etoh, and K. Takehara, Annu. Rev. Fluid Mech. 40, 257 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    L. V. Zhang, J. Toole, K. Fezzaa, and R. D. Deegan, J. Fluid Mech. 690, 1 (2011).Google Scholar
  4. 4.
    V. E. Prokhorov and Yu. D. Chashechkin, Acoust. Phys. 57, 807 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. D. Chashechkin and V. E. Prokhorov, Dokl. Phys. 58, 296 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    G.-Z. Zhu, Z.-H. Li, and D. Fu, Chin. Sci. Bull. 53, 1634 (2008).CrossRefGoogle Scholar
  7. 7.
    D. Morton, M. Rudman, and J. Liow, Phys. Fluids 12, 747 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    V. O. Knudsen, R. S. Alford, and J. W. Emling, J. Marine Res. 1, 410 (1948).Google Scholar
  9. 9.
    L. Bjorno, J. de Physique IV. Colloque C5. 4 Suppl., 1023 (1994).Google Scholar
  10. 10.
    H. C. Pumphrey and L. Crum, J. Acoust. Soc. Am. 87, 142 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    G. J. Franz, J. Acoust. Soc. Am. 31, 1080 (1959).ADSCrossRefGoogle Scholar
  12. 12.
    M. S. Longuet-Higgins, J. Fluid Mech. 214, 395 (1990).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    V. E. Prokhorov and Yu. D. Chashechkin, Dokl. Phys. 57, 114 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. D. Chashechkin and V. E. Prokhorov, Adv. Appl. Acoust. (AIAAS) 3, 1 (2014).CrossRefGoogle Scholar
  15. 15.
    J. A. Nystuen, J. Acoust. Soc. Am. 79, 972 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    M. Thundiyil and P. Pillai, J. Acoust. Soc. Am. 121, 3033 (2007).CrossRefGoogle Scholar
  17. 17.
    D. Barclay and M. Buckingham, J. Acoust. Soc. Am. 133, 2576 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    V. E. Prokhorov and Yu. D. Chashechkin, Fluid Dynamics 49, 515 (2014).CrossRefGoogle Scholar
  19. 19.
    P. V. Lebedev-Stepanov and O. V. Rudenko, Acoust. Phys. 61, 173 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6, Fluid Mechanics (Butterworth-Heinemann, 1987), 2nd ed.Google Scholar
  21. 21.
    D. Eisenberg and V. Kautsman, Structure and Properties of Water (Gidrometeoizdat, Leningrad, 1975) [in Russian].Google Scholar
  22. 22.
    M. Minnaert, Philos. Mag. 16, 235 (1933).CrossRefGoogle Scholar
  23. 23.
    Yu. D. Chashechkin and V. E. Prokhorov, Dokl. Phys. 56, 134 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    E. V. Glushkov, M. V. Glushkova, and O. A. Godin, Acoust. Phys. 59, 6 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    V. E. Prokhorov and Yu. D. Chashechkin, Dokl. Phys. 57, 151 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    E. G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics (Kluwer, New York, 2003).zbMATHGoogle Scholar
  27. 27.
    R. Greef and J. G. Frey, Phys. Stat. Solidi 5, 1184 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations