Advertisement

Acoustical Physics

, Volume 61, Issue 5, pp 527–533 | Cite as

On solving certain nonlinear acoustics problems

  • L. I. RubinaEmail author
  • O. N. Ul’yanov
Nonlinear Acoustics
  • 51 Downloads

Abstract

Previously the authors developed a geometric method for studying and solving nonlinear equations and systems of equations with partial derivatives. This method is used in this paper to obtain a series of exact solutions to certain nonlinear acoustics equations, as well as to reduce the system of Euler equations to systems of common differential equations.

Keywords

nonlinear equations in partial derivatives methods of solving differential equations nonlinear acoustics equations exact solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Kh. Ibragimov and O. V. Rudenko, Acoust. Phys. 50, 406 (2004).CrossRefADSGoogle Scholar
  2. 2.
    A. G. Kudryavtsev and O. A. Sapozhnikov, Acoust. Phys. 57, 311 (2011).CrossRefADSGoogle Scholar
  3. 3.
    V. Yu. Karasev, Akust. Zh. 41, 928 (1995).Google Scholar
  4. 4.
    Yu. R. Lapidus and O. V. Rudenko, Akust. Zh. 38, 363 (1992).Google Scholar
  5. 5.
    O. V. Rudenko, Acoust. Phys. 60, 368 (2014).ADSGoogle Scholar
  6. 6.
    N. H. Ibragimov, S. V. Meleshko, and O. V. Rudenko, J. Phys. A: Math. Theor. 44, 315201 (2011).MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Rudenko, O.V. and Soluyan, S.I., Nonlinear Acoustic Theory, (Nauka, Moscow, 1975), [in Russian].Google Scholar
  8. 8.
    O. V. Rudenko, Acoust. Phys. 56, 457 (2010).CrossRefADSGoogle Scholar
  9. 9.
    L. I. Rubina and O. N. Ul’yanov, Proc. Steklov Inst. Mathem. 261, suppl. 1, 183 (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. I. Rubina and O. N. Ul’yanov, Tr. Ins. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 16, 209 (2010).Google Scholar
  11. 11.
    L. I. Rubina and O. N. Ul’yanov, Tr. Ins. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 18, 265 (2012).Google Scholar
  12. 12.
    L. I. Rubina and O. N. Ul’yanov, Sibir. Mathem. J. 53, 872 (2012).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. I. Rubina and O. N. Ul’yanov, Tr. Ins. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 20, 238 (2014).Google Scholar
  14. 14.
    L. I. Rubina and O. N. Ul’yanov, Vestnik Yuzh.-Ural. Gos. Univ. Ser. Matem. Mekh. Fiz. 5, 52 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and Mechanics, Ural BranchRussian Academy of SciencesMoscowRussian
  2. 2.Ural Federal University n.a. First President of Russia B.N. YeltsinMoscowRussian

Personalised recommendations