Advertisement

Acoustical Physics

, Volume 61, Issue 3, pp 308–332 | Cite as

Sonoluminescence: Experiments and models (Review)

Physical Acoustics

Abstract

Three models of the sonoluminescence source formation are considered: the shock-free compression model, the shock wave model, and the polarization model. Each of them is tested by experimental data on the size of the radiating region and the angular radiation pattern; the shape and duration of the radiation pulse; the influence of the type of liquid, gas composition, surfactants, sound frequency, and temperature of the liquid on the radiation intensity; the characteristics of the shock wave in the liquid; and the radiation spectra. It is shown that the most adequate qualitative explanation of the entire set of experimental data is given by the polarization model. Methods for verifying the model are proposed. Publications devoted to studying the possibility a thermonuclear fusion reaction in a cavitation system are reviewed.

Keywords

sonoluminescence shock-free compression model shock wave model polarization model testing of models sonofusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Barber, R. A. Hiller, R. Lofstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep. 281(2), 65 (1997).ADSGoogle Scholar
  2. 2.
    M. A. Margulis, Phys.-Usp. 43, 259 (2000).ADSGoogle Scholar
  3. 3.
    V. P. Brenner, S. Hilgenfeld, and D. Lohse, Rev. Mod. Phys. 74, 425 (2002).ADSGoogle Scholar
  4. 4.
    W. Lauterborn and T. Kurz, Rep. Prog. Phys. 73, 106501 (2010).ADSGoogle Scholar
  5. 5.
    C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Phil. Trans. R. Soc. Lond., A 347, 269 (1999).ADSMathSciNetGoogle Scholar
  6. 6.
    G. L. Sharipov, B. M. Gareev, and A. M. Abdrakhmanov, Acoust. Phys. 59, 521 (2013).ADSGoogle Scholar
  7. 7.
    R. B. Valitov, A. K. Kurochkin, and E. A. Smordov, Akust. Zh. 33, 940 (1987).Google Scholar
  8. 8.
    Y. I. Didenko, W. B. McNamara, and K. S. Suslick, Nature 407, 877 (2000).ADSGoogle Scholar
  9. 9.
    R. Urteaga and F. Bonetto, Phys. Rev. Lett. 100, 074302 (2008).ADSGoogle Scholar
  10. 10.
    S. D. Hopkins, S. J. Putterman, B. A. Kappus, K. S. Suslick, C. G. Camara, Phys. Rev. Lett. 95, 254301 (2005).ADSGoogle Scholar
  11. 11.
    H. Xu and K. S. Suslick, Phys. Rev. Lett. 104, 244301 (2010).ADSGoogle Scholar
  12. 12.
    D. J. Flannigan and K. S. Suslick, Phys. Rev. Lett. 99, 134301 (2007).ADSGoogle Scholar
  13. 13.
    D. J. Flannigan and K. S. Suslick, Nature 434, 52 (2005).ADSGoogle Scholar
  14. 14.
    G. L. Sharipov, A. M. Abdrakhmanov, and B. M. Gareev, Tech. Phys. Lett. 38, 74 (2012).ADSGoogle Scholar
  15. 15.
    M. Marinesco and Y. Y. Trillat, C. R. Acad. Sci. Raris 196, 858 (1933).Google Scholar
  16. 16.
    H. Frenzel and H. Schultes, Z. Phys. Chem. B 27, 21 (1934).Google Scholar
  17. 17.
    D. F. Gaitan, L. A. Grum, C. C. Church, and R. A. Roy, J. Acoust. Soc. Am. 91, 3166 (1992).ADSGoogle Scholar
  18. 18.
    W. Chen, W. Huang, Y. Liang, X. Gao, and W. Cui, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 78, 035301 (2008).ADSGoogle Scholar
  19. 19.
    M. T. Levinsen, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 85, 016309 (2012).ADSGoogle Scholar
  20. 20.
    N. A. Roi, Akust. Zh. 3(1), 3 (1957).Google Scholar
  21. 21.
    I. G. Mikhailov and V. A. Shutilov, Akust. Zh. 5(3), 361 (1959).Google Scholar
  22. 22.
    I. E. El’piner, Akust. Zh. 6(1), 3 (1960).Google Scholar
  23. 23.
    M. G. Sirotyuk, Akust. Zh. 8(3), 255 (1962).Google Scholar
  24. 24.
    V. E. Gordeev, A. I. Serbinov, and Ya. K. Troshin, Akust. Zh. 14(2), 287 (1968).Google Scholar
  25. 25.
    M. A. Margulis, Akust. Zh. 15(2), 153 (1969).Google Scholar
  26. 26.
    A. G. Akmanov, V. G. Ben’kovskii, P. I. Golubnichii, S. I. Maslennikov, and V. G. Shemanin, Akust. Zh. 19(5), 649 (1973).Google Scholar
  27. 27.
    R. G. Valeev, P. I. Golubnichii, and K. F. Olzoev, Akust. Zh. 25(6), 848 (1979).Google Scholar
  28. 28.
    V. N. Alekseev and V. P. Yushin, Akust. Zh. 32(6), 748 (1986).Google Scholar
  29. 29.
    T. V. Gordeichuk, Yu. T. Didenko, and S. P. Pugach, Acoust. Phys. 42, 240 (1996).ADSGoogle Scholar
  30. 30.
    A. O. Maksimov, Acoust. Phys. 47, 93 (2001).ADSMathSciNetGoogle Scholar
  31. 31.
    G. N. Sankin, Acoust. Phys. 51, 338 (2005).ADSGoogle Scholar
  32. 32.
    M. Ashokkumar, Ultrason. Sonochem. 18, 864 (2011).Google Scholar
  33. 33.
    M. R. Brenner, D. Lohse, D. Oxtoby, and T. F. Dupont, Phys. Rev. Lett. 76, 1158 (1996).ADSGoogle Scholar
  34. 34.
    R. G. Holt and D. F. Gaitan, Phys. Rev. Lett. 77, 3791 (1996).ADSGoogle Scholar
  35. 35.
    I. Akhatov, N. Gumerov, C. D. Ohl, W. Parlitz, and W. Lauterborn, Phys. Rev. Lett. 78, 227 (1997).ADSGoogle Scholar
  36. 36.
    C. Camara, S. Putterman, and E. Kirillov, Phys. Rev. Lett. 92, 12304 (2004).Google Scholar
  37. 37.
    K. R. Weninger, C. G. Camara, and S. Y. Putterman, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 63, 016310 (2000).Google Scholar
  38. 38.
    B. P. Barber and S. J. Putterman, Phys. Rev. Lett. 69, 3839 (1992).ADSGoogle Scholar
  39. 39.
    T. J. Matula, Phil. Trans. R. Soc. Lond. A 357, 225 (1999).ADSMathSciNetGoogle Scholar
  40. 40.
    G. Flinn, Physics of acoustical cavitation in liquids, in Physical Acoustics, Ed. by W.P. Mason, Vol. 1, Part B, (Academic, New York, 1964; Mir, Moscow, 1967).Google Scholar
  41. 41.
    Rayleigh, Philos. Mag. 34, p. 94 (1917).MATHGoogle Scholar
  42. 42.
    K. R. Weninger, B. R. Barber, and S. J. Putterman, Phys. Rev. Lett. 78, 1799 (1998).ADSGoogle Scholar
  43. 43.
    Y. R. Willison, Phys. Rev. Lett. 81, 5430 (1998).ADSGoogle Scholar
  44. 44.
    Y. Schwinger, Proc. Nat. Acad. Sci. USA 89, 1118 (1992).Google Scholar
  45. 45.
    C. Eberlein, Phys. Rev. Lett. 76, 3842 (1996).ADSGoogle Scholar
  46. 46.
    C. Eberlein, Phys. Rev. A: Atom., Molec. Opt. Phys. 53, 2772 (1996).ADSGoogle Scholar
  47. 47.
    C. S. Unnikrishman, S. Mukhopadhyay, and C. Eberlein, Phys. Rev. Lett. 77, 4690 (1996).ADSGoogle Scholar
  48. 48.
    P. Mohanty and S. V. Khare, Phys. Rev. Lett. 80, 189 (1998).ADSGoogle Scholar
  49. 49.
    B. E. Noltingk and E. A. Neppiras, Proc. Phys. Soc. Lond. B 63, 674 (1950).ADSGoogle Scholar
  50. 50.
    Ya. I. Frenkel’, Zh. Fiz. Khim. 14, 305 (1940).Google Scholar
  51. 51.
    P. I. Golubnichii, A. M. Sytnikov, and A. D. Filonenko, Akust. Zh. 33(3), 454–457 (1987).Google Scholar
  52. 52.
    Physical Enciclopedia (Sov. Entsiklopediya, Moscow, 1993), Vol. 3 [in Russian].Google Scholar
  53. 53.
    M. A. Margulis and I. M. Margulis, Acoust. Phys. 52(3), 283 (2006).ADSGoogle Scholar
  54. 54.
    K. S. Suslick, Science 247, 1434 (1990).ADSGoogle Scholar
  55. 55.
    K. Yasui, Phys. Rev. Lett. 83, 4297 (1999).ADSGoogle Scholar
  56. 56.
    L. Fromnhold, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 58, 1899 (1998).ADSGoogle Scholar
  57. 57.
    K. Yasui, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 60, 1754 (1999).ADSGoogle Scholar
  58. 58.
    N. Xu, L. Wang, and X. Hu, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 61, 2611 (2000).ADSGoogle Scholar
  59. 59.
    D. Hammer and L. Frommhold, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 66, 056303 (2002).ADSGoogle Scholar
  60. 60.
    Y. Scheider, R. Pflieger, S. I. Nikitenko, D. Shchukin, and H. Mohwald, J. Phys. Chem. A 115, 136 (2011).Google Scholar
  61. 61.
    P. Jorman, J. Acoust. Soc. Am. 32, 1459 (1960).ADSGoogle Scholar
  62. 62.
    C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).ADSGoogle Scholar
  63. 63.
    B. P. Barber, C. C. Wu, R. Lofstedt, P. H. Roberts, and S. J. Putterman, Phys. Rev. Lett. 72, 1380 (1994).ADSGoogle Scholar
  64. 64.
    L. Fromhold and A. A. Atchley, Phys. Rev. Lett. 73, 2883 (1994).ADSGoogle Scholar
  65. 65.
    B. P. Barber, K. Weninger, R. Lofstedt, and S. Putterman, Phys. Rev. Lett. 74, 5276 (1995).ADSGoogle Scholar
  66. 66.
    W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, Phys. Fluids 6, 2979 (1994).ADSGoogle Scholar
  67. 67.
    R. I. Nigmatulin, I. S. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, Jr., R. T. Lahey, and R. P. Tallyarhan, Phys. Fluids 17, 107106 (2005).ADSGoogle Scholar
  68. 68.
    T. Lepoint, D. D. Pauw, F. Lepoint-Mullie, M. Goldman, and A. Goldman, J. Acoust. Soc. Am. 101, 2012 (1997).ADSGoogle Scholar
  69. 69.
    A. J. Prosperetti, J. Acoust. Soc. Am. 101, 2003 (1997).ADSGoogle Scholar
  70. 70.
    N. Garcia, A. P. Levanyuk, and V. V. Osipov, JETP Lett. 70, 431 (1999).ADSGoogle Scholar
  71. 71.
    N. Garcia, A. P. Levanyuk, and V. V. Osipov, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 62, 2168 (2000).ADSGoogle Scholar
  72. 72.
    Poplavko, Yu.M., Fizika Dielektrikov (Physics of Dielectrics), (Vissh. Shkola, Kiev, 1980).Google Scholar
  73. 73.
    R. A. Graham, Physics and Chemistry (Springer-Verlag, New York, 1993).Google Scholar
  74. 74.
    S. S. Nabatov, V. A. Borisenok, A. M. Molodets, and E. Z. Novitskii, Electrical Effects in Shock Waves (FGUP RFYaTs-VNIIEF, Sarov, 2005) [in Russian].Google Scholar
  75. 75.
    V. A. Borisenok, Phys. Lett. A 372, 3496 (2008).ADSGoogle Scholar
  76. 76.
    V. A. Borisenok, Proc. Int. Conf. “Khariton’s Scientific Readings”, 2009 (RFYaTs-VNIIEF, Sarov), pp. 678–687.Google Scholar
  77. 77.
    A. Troia and D. M. Ripa, Ultrasonic Sonochemistry 18, 1180 (2011).Google Scholar
  78. 78.
    K. Yasui, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 58, 471 (1998).ADSGoogle Scholar
  79. 79.
    D. Flannigan, S. Hopkins, C. Camara, S. J. Putterman, and K. S. Suslick, Phys. Rev. Lett. 96, 204301 (2006).ADSGoogle Scholar
  80. 80.
    R. Urteada, H. Dellavale, G. F. Puente, and F. J. Bonetto, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 76, 056317 (2007).ADSGoogle Scholar
  81. 81.
    G. L. Sharipov, A. M. Abdrakhmanov, and L. D. Zagretdinova, Tech. Phys. 55, 1609 (2010).Google Scholar
  82. 82.
    T. J. Matula, R. A. Roy, P. D. Monrad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).ADSGoogle Scholar
  83. 83.
    T. V. Gordeychyk and M. V. Kozachek, Proc. 20th Sess. Russ. Acoust. Soc., 2008, pp. 37–40.Google Scholar
  84. 84.
    Y. Xu, W. Chen, X. Xu, Y. Liang, W. Huang, and X. Gao, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 76, 026308 (2007).ADSGoogle Scholar
  85. 85.
    K. S. Suslick, E. B. Flint, M. W. Grinstaff, and K. A. Kemper, J. Phys. Chem. 97, 3098 (1993).Google Scholar
  86. 86.
    G. L. Sharipov, R. Kh. Gainetdinov, and A. M. Abdrakhmanov, Russ. Chem. Bull. no. 9, 1966 (2003).Google Scholar
  87. 87.
    G. L. Sharipov, B. M. Gareev, and A. M. Abdrakhmanov, JETP Lett. 91, 566 (2010).ADSGoogle Scholar
  88. 88.
    G. L. Sharipov, A. M. Abdrakhmanov, and B. M. Gareev, Tech. Phys. The Russ. J. Appl. Phys. 58, 255 (2013).Google Scholar
  89. 89.
    W. B. McNamara, Yu. T. Didenko, and K. S. Suslick, Nature 401, 772 (1999).ADSGoogle Scholar
  90. 90.
    Yu. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).ADSGoogle Scholar
  91. 91.
    R. A. Hiller and S. Y. Putterman, Phys. Rev. Lett. 75, 3549 (1995).ADSGoogle Scholar
  92. 92.
    G. Vazques, C. Camara, S. J. Putterman, and K. Weninger, Phys. Rev. Lett. 88, 197402 (2002).ADSGoogle Scholar
  93. 93.
    D. Lohse, M. P. Brenner, T. F. Dupont, S. Hilgenfeldt, and B. Johnson, Phys. Rev. Lett. 78, 1359 (1997).ADSGoogle Scholar
  94. 94.
    B. D. Storey and A. J. Szeri, Phys. Rev. Lett. 88, 074301 (2002).ADSGoogle Scholar
  95. 95.
    T. J. Matula and L. A. Crum, Phys. Rev. Lett. 80, 865 (1998).ADSGoogle Scholar
  96. 96.
    J. A. Kattering and R. E. Apfel, Phys. Rev. Lett. 81, 4991 (1998).ADSGoogle Scholar
  97. 97.
    Yu. T. Didenko and K. S. Suslick, Nature 418, 394 (2002).ADSGoogle Scholar
  98. 98.
    Y. Holzfuss and M. T. Levinsen, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 77, 046304 (2008).ADSGoogle Scholar
  99. 99.
    G. E. Vazquer and S. Y. Putterman, Phys. Rev. Lett. 85, 3037 (2000).ADSGoogle Scholar
  100. 100.
    R. Hiller, S. Y. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).ADSGoogle Scholar
  101. 101.
    O. A. Osipov, V. I. Minkin, and A. D. Garnovskii, A Handbook on Dipole Moments (Vyssh. Shkola, Moscow, 1971) [in Russian].Google Scholar
  102. 102.
    Physical Value Tables Ed. by I.K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].Google Scholar
  103. 103.
    Physical Values. A Handbook Ed. by I.S. Grigor’ev and E.Z. Meilikhov, (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  104. 104.
    The Chemist Handbook (Gos. Nauchno-Tekhn. Izd. Khim. Lit., Moscow, 1962) [in Russian].Google Scholar
  105. 105.
    J. S. Dam and M. T. Levinsen, Phys. Rev. Lett. 92, 144301 (2004).ADSGoogle Scholar
  106. 106.
    J. S. Dam, The origin of sonoluminescence or measurement the size of the light-emitting region in sonoluminescing bubble, Ph. D. Thesis, (Niels Bohr Institute University of Copenhagen, 2006).Google Scholar
  107. 107.
    J. S. Dam, M. T. Levinsen, and M. Scogstad, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 67, 026303 (2003).ADSGoogle Scholar
  108. 108.
    J. S. Dam and M. T. Levinsen, Phys. Rev. Lett. 94, 174301 (2005).ADSGoogle Scholar
  109. 109.
    M. S. Kasimzade, R. F. Khalilov, and A. N. Balashov, Electrokinetic Information Transformers, (Energiya, Moscow, 1973) [in Russian].Google Scholar
  110. 110.
    S. Hilgenfeldt, D. Lohse, and W. C. Moss, Phys. Rev. Lett. 80, 1332 (1998).ADSGoogle Scholar
  111. 111.
    A Short Handbook of Physical and Chemical Values, Ed. by K. P. Mishchenko and A. A. Ravdel (Khimiya, Leningrad, 1974) [in Russian].Google Scholar
  112. 112.
    R. Togel, S. Hilgenfelt, and D. Lohse, Phys. Rev. Lett. 84, 2509 (2000).ADSGoogle Scholar
  113. 113.
    M. Ashokkumar, J. Guan, R. Tronson, T. J. Matula, J. W. Nuske, and F. Grieser, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 65, 046310 (2002).ADSGoogle Scholar
  114. 114.
    W. Cui, S. Qi, W. Chen, C. Zhou, and Yu. Tu, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 85, 026304 (2012).ADSGoogle Scholar
  115. 115.
    Physical Encyclopedic Dictionary (Sovetskaya entsiklopediya, Moscow, 1984) [in Russian].Google Scholar
  116. 116.
    M. Ashokkumar, L. A. Crum, C. A. Frensley, F. Grieser, T. J. Matula, W. B. McNamara, and K. S. Suslick, J. Phys. Chem. A 104, 8462 (2000).Google Scholar
  117. 117.
    Z. Q. Wang, R. Pecha, B. Gompf, and W. Eisenmenger, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 59, 1777 (1999).ADSGoogle Scholar
  118. 118.
    R. Pecha and B. Compf, Phys. Rev. Lett. 84, 1328 (2000).ADSGoogle Scholar
  119. 119.
    T. J. Matula, I. M. Hallai, R. O. Cleveland, L. A. Crum, W. C. Moss, and R. A. Roy, J. Acoust. Soc. Am. 103, 1377 (1998).ADSGoogle Scholar
  120. 120.
    J. Holzfuss, M. Ruggeberg, and A. Billo, Phys. Rev. Lett. 81, 5434 (1998).ADSGoogle Scholar
  121. 121.
    D. F. Gaitan, R. A. Tessien, R. A. Hiller, J. Gutierres, C. Scott, H. Tardif, B. Callahan, T. J. Matula, L. A. Crum, R. G. Holt, C. C. Church, and J. L. Raymond, J. Acoust. Soc. Am. 127, 3456 (2010).ADSGoogle Scholar
  122. 122.
    D. F. Gaitan, Yu. A. Pushchalnikov, T. J. Matula, C. C. Church, J. Gutierres, C. Scott, R. G. Holt, and L. A. Crum, J. Acoust. Soc. Am. 129, 2619 (2011).ADSGoogle Scholar
  123. 123.
    T. J. Matula, B. McConnaghy, L. Crum, and D. F. Gaitan, J. Acoust. Soc. Am. 129, 2620 (2011).ADSGoogle Scholar
  124. 124.
    C. C. Church, D. F. Gaitan, Yu. A. Pushchalnikov, and T. J. Matula, J. Acoust. Soc. Am. 129, 2619 (2011).ADSGoogle Scholar
  125. 125.
    T. V. Gordeichuk, Electron Journal “Studied in Russia” 1472 (2002).Google Scholar
  126. 126.
    Yu. T. Didenko and T. V. Gordeychuk, Phys. Rev. Lett. 84, 5640 (2000).ADSGoogle Scholar
  127. 127.
    J. B. Young, J. A. Nelson, and W. Kang, Phys. Rev. Lett. 86, 2673 (2001).ADSGoogle Scholar
  128. 128.
    Yu. T. Didenko, Acoust. Phys. 43, 215 (1970).ADSGoogle Scholar
  129. 129.
    B. Gompf, R. Gunter, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).ADSGoogle Scholar
  130. 130.
    R. Hiller, S. Putterman, and K. Weninger, Phys. Rev. Lett. 80, 1090 (1998).ADSGoogle Scholar
  131. 131.
    M. Moran and G. Sweider, Phys. Rev. Lett. 80, 4987 (1998).ADSGoogle Scholar
  132. 132.
    R. Pecha, B. Gompf, Z. Q. Wang, and W. Eisenmenger, Phys. Rev. Lett. 81, 717 (1998).ADSGoogle Scholar
  133. 133.
    D. Hammer and L. Frommhold, J. Mod. Opt. 48, 239 (2001).ADSGoogle Scholar
  134. 134.
    S. Hilgenfeldt, S. Crossman, and D. Lohse, Nature 398, 402 (1999).ADSGoogle Scholar
  135. 135.
    S. Hilgenfeldt, S. Crossman, and D. Lohse, Phys. Fluids 11, 1318 (1999).ADSMATHMathSciNetGoogle Scholar
  136. 136.
    N. P. Mel’nikov, G. A. Ostroumov, and A. A. Shteinberg, Dokl. Akad. Nauk SSSR 147, 822 (1962).Google Scholar
  137. 137.
    N. P. Mel’nikov, G. A. Ostroumov, and M. Yu. Stoyak, Dokl. Akad. Nauk SSSR 148, 1057 (1963).Google Scholar
  138. 138.
    E. V. Zotov, Electric-Spark Initiation of Liquid Explosive Substances, (FGUP RFYaTs-VNIIEF, Sarov, 2004) [in Russian].Google Scholar
  139. 139.
    T. Chou and E. G. Blackman, Phys. Rev. Lett. 76, 1549 (1996).ADSGoogle Scholar
  140. 140.
    Y. B. Young, T. Shmidel, and W. Kang, Phys. Rev. Lett. 77, 4816 (1996).ADSGoogle Scholar
  141. 141.
    S. Hilgenfeldt and D. Lohse, Phys. Rev. Lett. 82, 1036 (1999).ADSGoogle Scholar
  142. 142.
    R. Toegel, B. Gompf, R. Pecha, and D. Lohse, Phys. Rev. Lett. 85, 3165 (2000).ADSGoogle Scholar
  143. 143.
    E. I. Zababakhin, Sov. Phys.-Usp. 8, 295 (1965).ADSGoogle Scholar
  144. 144.
    E. I. Zababakhin, Pis’ma Zh. Eksp. Teor. Fiz. 30(2), 97 (1979).Google Scholar
  145. 145.
    K. P. Stanyukovich and O. B. Khavroshkin, Effect of Pulse Thermonuclear Reaction Appearance in Slammed Cavitation Cavity in Usual Water. Zayavka Na Otkrytie, OT No. 8559.Google Scholar
  146. 146.
    M. G. Flynn, Method of generation energy by acoustically induced cavitation fusion and reactor there for. US patent, 4333796.Google Scholar
  147. 147.
    W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, Phys. Lett. A 211, 69 (1996).ADSGoogle Scholar
  148. 148.
    R. P. Taleyarkhan, C. D. West, J. S. Cho, Jr., R. T. Lahey, R. I. Nigmatulin, R. C. Block, Science 295, 1868 (2002).ADSGoogle Scholar
  149. 149.
    R. I. Nigmatulin, R. P. Taleyarkhan, and R. T. Laney, Int. J. Power Energy Syst. A218, 345 (2004).Google Scholar
  150. 150.
    R. P. Taleyarkhan, J. S. Cho, C. D. West, Jr. R. T. Lahey, and R. I. Nigmatulin, R. C. Block, Phys. Rev. E: Statist. Nonlin. Soft Matter Phys. 69, 036109 (2004).ADSGoogle Scholar
  151. 151.
    R. P. Taleyarkhan, C. D. West, R. T. Lahey, R. I. Nigmatulin, R. C. Block, and Y. Xu, Phys. Rev. Lett. 96, 034301 (2006).ADSGoogle Scholar
  152. 152.
    D. Shapira and M. Saltmarsh, Phys. Rev. Lett. 89(10), 10302 (2002).Google Scholar
  153. 153.
    Y. Xu and A. Butt, Nucl. Eng. and Design 235(10–12), 1317 (2005).Google Scholar
  154. 154.
    E. R. Forringer, D. Robbins, and J. Martin, Trans. Am. Nucl. Soc. 95, 736 (2007).Google Scholar
  155. 155.
    C. G. Camara, S. D. Hopkins, K. S. Suslick, and S. G. Putterman, Phys. Rev. Lett. 98, 064301 (2007).ADSGoogle Scholar
  156. 156.
    V. B. Belyaev, B. F. Kostenko, M. B. Miller, A. V. Sermyagin, and A. S. Topol’nikov, Preprint No. R3-2003214, OIYaI (Joint Inst. Nuclear Studies), 2003, Dubna.Google Scholar
  157. 157.
    B. F. Kostenko, M. B. Miller, and Yu. N. Pokotilovskii, Preprint No. R13-2004-215, OIYaI (Joint Inst. Nuclear Studies), 2004, Dubna.Google Scholar
  158. 158.
    M. B. Miller, A. V. Sermyagin, Yu. G. Sobolev, and B. F. Kostenko, Preprint No. R13-2004-214, OIYaI (Joint Inst. Nuclear Studies), 2004, Dubna.Google Scholar
  159. 159.
    A. A. Goverdovskii, V. S. Imshennik, and V. P. Smirnov, Phys.-Usp. 56, 423 (2013).ADSGoogle Scholar
  160. 160.
    R. I. Nigmatulin, Nucl. Eng. Design 235, 1079 (2005).Google Scholar
  161. 161.
    R. Geisler, W.-D. Schmidt, T. Kurz, and W. Lauterborn, Europhys. Lett. 66, 435 (2004).ADSGoogle Scholar
  162. 162.
    V. S. Imshennik, Prikl. Mekh. Tekh. Fiz. 10, 10 (1980).MathSciNetGoogle Scholar
  163. 163.
    A. V. Pavlenko, S. I. Balabin, O. E. Shestachenko, O. E. Kozelkov, A. A. Tyaktev, and V. N. Popov, Phys. Scripta 155, 014060 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations