Acoustical Physics

, Volume 60, Issue 4, pp 387–397 | Cite as

Counterpropagation of waves with shock fronts in a nonlinear tissue-like medium

  • E. G. Lobanova
  • S. V. Lobanov
  • V. A. Khokhlova
Nonlinear Acoustics

Abstract

A numerical model for describing the counterpropagation of one-dimensional waves in a nonlinear medium with an arbitrary power law absorption and corresponding dispersion is developed. The model is based on general one-dimensional Navier-Stokes equations with absorption in the form of a time-domain convolution operator in the equation of state. The developed algorithm makes it possible to describe wave interactions in the presence of shock fronts in media like biological tissue. Numerical modeling is conducted by the finite difference method on a staggered grid; absorption and sound speed dispersion are taken into account using the causal memory function. The developed model is used for numerical calculations, which demonstrate the absorption and dispersion effects on nonlinear propagation of differently shaped pulses, as well as their reflection from impedance acoustic boundaries.

Keywords

relaxation dispersion nonlinearity full wave equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Physical Principles in Ultrasound Medicine, Ed. by K. Hill, D. Bember, and G. Haar (Wiley, London, 2004), 2nd ed.Google Scholar
  2. 2.
    M. R. Beiley, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49, 369 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    O. V. Rudenko, Phys.-Usp. 50, 359 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Averkiou, in Proc. IEEE Int. Ultrasonics Symp., 2000, Vol. 2, pp. 1563–1572.Google Scholar
  5. 5.
    V. A. Khokhlova, A. E. Ponomarev, M. A. Averkiou, and L. A. Crum, Acoust. Phys. 52, 481 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Averkiou and R. O. Cleveland, J. Acoust. Soc. Am. 106, 102 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, J. Acoust. Soc. Am. 111, 2049 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Filonenko and V. A. Khokhlova, Acoust. Phys. 47, 468 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    O. V. Rudenko and S. N. Gurbatov, Acoust. Phys. 58, 242 (2012).ADSGoogle Scholar
  10. 10.
    O. V. Rudenko, S. N. Gurbatov, and I. Yu. Demin, Acoust. Phys. 59, 584 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    I. M. Hallaj and R. O. Cleveland, J. Acoust. Soc. Am. 105, L7 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    L. Demi, K. W. A. van Dongen, and M. D. Verweij, J. Acoust. Soc. Am. 129, 1221 (2011).CrossRefGoogle Scholar
  13. 13.
    O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Akust. Zh. 20, 449 (1974).Google Scholar
  14. 14.
    M. O’Donnel, E. T. Janes, and J. G. Miller, J. Acoust. Soc. Am. 63, 1935 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    M. D. Collins, J. Acoust. Soc. Am. 84, 2114 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    T. L. Szabo, J. Acoust. Soc. Am. 97, 14 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    H. A. Jongen, J. M. Thijssen, M. van den Aarssen, and W. A. Verhoef, J. Acoust. Soc. Am. 79, 535 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    R. O. Cleveland, M. F. Hamilton, and D. T. Blackstock, J. Acoust. Soc. Am. 99, 3312 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    G. F. Pinton, J. Dahl, S. Rosenzweig, and G. E. Trahey, IEEE UFFC 56, 474 (2009).CrossRefGoogle Scholar
  20. 20.
    W. Chen and S. Holm, J. Acoust. Soc. Am. 115, 1424 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    B. E. Treeby and B. T. Cox, J. Acoust. Soc. Am. 127, 2741 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, J. Acoust. Soc. Am. 131, 4324 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    I. Drumm, Finite Difference Time Domain Tutorial (EPSRC Summer School, 2007).Google Scholar
  24. 24.
    T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, J. Acoust. Soc. Am. 130, 3498 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    A. D. Maxwell, T.-Y. Wang, C. A. Cain, J. B. Fowlkes, O. A. Sapozhnikov, M. R. Bailey, and Z. Xu, J. Acoust. Soc. Am. 130, 1888 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. G. Lobanova
    • 1
  • S. V. Lobanov
    • 2
  • V. A. Khokhlova
    • 1
    • 3
  1. 1.Physics FacultyMoscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologySkolkovo, Moscow oblastRussia
  3. 3.Center for Industrial and Medical Ultrasound, Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations