Advertisement

Acoustical Physics

, Volume 59, Issue 1, pp 6–15 | Cite as

The effect of anomalous transparency of the water-air interface for a volumetric sound source

  • E. V. GlushkovEmail author
  • N. V. Glushkova
  • O. A. Godin
Classical Problems of Linear Acoustics and Wave Theory

Abstract

Anomalous transparency consists in the passage at certain frequencies of the majority of a source’s radiated energy through an interface, which usually gives strong reflection. Earlier, this effect was established for low-frequency point sources located in a fluid bounded by an air medium. In the case of volumetric sources, additional scattering of waves occurs between the interface of the media and the emitter surface; and the character of the manifestation of this effect is unclear. This work, using the solution to the integral equation corresponding to a boundary value problem, examines the emission of wave energy by spherical sources of different radius and its distribution between the energy flow passing through the water-air interface into the upper half-space and the energy flow going to infinity in the lower half-space. It has been established that the size of the source has virtually no effect on the energy distribution in the low-frequency range, i.e., on the anomalous transparency effect. We also analyze how the relative dimensions of spherical sources affect the energy characteristics in the mid- and high-frequency range.

Keywords

spherical emitter integral equation wave energy anomalous transparency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Godin, Phys. Rev. Lett. 97, 164301 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    O. A. Godin, Akust. Zh. 53, 353 (2007) [Acoust. Phys. 53, 305 (2007)].Google Scholar
  3. 3.
    O. A. Godin, Contemp. Phys. 49, 105 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Hornikx and R. Waxler, J. Comput. Acoust. 18, 297 (2010).MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. S. Matoza, D. Fee, and M. A. Garcés, J. Geophys. Res. B 115, B12312 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    O. A. Godin, J. Acoust. Soc. Am. 129, 45 (2011).ADSGoogle Scholar
  7. 7.
    G. H. Koopman, L. Song, and J. B. Fahnline, J. Acoust. Soc. Am. 86, 2433 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    G. W. Benthien and H. A. Schenck, Comp. Struct. 65, 295 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    H. A. Schenck, J. Acoust. Soc. Am. 44, 41 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    E. V. Glushkov, N. V. Glushkova, A. A. Eremin, and V. V. Mikhas’kiv, Prikl. Mat. Mekh. 73, 622 (2009).MathSciNetGoogle Scholar
  11. 11.
    M. Zampolli, A. Tesei, G. Canepa, and O. A. Godin, J. Acoust. Soc. Am. 123, 4051 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    L. M. Brekhovskikh and O. A. Godin, Acoustics of Inhomogeneous Media. Vol. 1: Fundamentals of Sound Reflection and Propagation Theory (Nauka, Moscow, 2007) 446 p. [in Russian].Google Scholar
  13. 13.
    A. G. Sveshnikov, Dokl. Akad. Nauk SSSR 80, 345 (1951).zbMATHGoogle Scholar
  14. 14.
    N. A. Umov, Selected Papers (Gostekhizdat, Moscow, 1950) [in Russian].Google Scholar
  15. 15.
    D. M. F. Chapman, J. Acoust. Soc. Am. 124, 48 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  17. 17.
    O. A. Godin, J. Acoust. Soc. Am. 130, EL135 (2011).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    O. A. Godin, Proc. Conf. OCEANS’11 MTS/IEEE Kona, Hawaii, 2011, pp. 1–9.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. V. Glushkov
    • 1
    Email author
  • N. V. Glushkova
    • 1
  • O. A. Godin
    • 2
  1. 1.Kuban State UniversityKrasnodarRussia
  2. 2.University of Colorado and NOAA/Earth System Research LaboratoryBoulderUSA

Personalised recommendations