Advertisement

Acoustical Physics

, Volume 58, Issue 1, pp 1–21 | Cite as

Focused ultrasound as a tool to input sensory information to humans (Review)

  • L. R. Gavrilov
  • E. M. Tsirulnikov
Acoustics of Living Systems. Biological acoustics

Abstract

This review is devoted to the analysis of studies and implementations related to the use of focused ultrasound for functional effects on neuroreceptor structures. Special attention was paid to the stimulation of neuroreceptor structures in order to input sensory information to humans. This branch of medical and physiological acoustics appeared in Russia in the early 1970s and was being efficiently developed up to the late 1980s. Then, due to lack of financial support, only individual researchers remained at this field and, as a result, we have no full- fledged theoretical research and practical implementations in this area yet. Many promising possibilities of using functional effects of focused ultrasound in medicine and physiology have remained unimplemented for a long time. However, new interesting ideas and approaches have appeared in recent years. Very recently, very questionable projects have been reported related to the use of ultrasound for targeted functional effects on the human brain performed in some laboratories. In this review, the stages of the development of scientific research devoted to the functional effects of focused ultrasound are described. By activating the neuroreceptor structures of the skin by means pulses of focused ultrasound, one can cause all the sensations perceived by human beings through the skin in everyday life, such as tactile sensations, thermal (heat and cold), tickling, itching, and various types of pain. Stimulation of the ear labyrinth of humans with normal hearing using amplitude-modulated ultrasound causes auditory sensations corresponding to an audio modulating signal (pure tones, music, speech, etc.). Activation of neuroreceptor structures by means of focused ultrasound is used for the diagnosis of various neurological and skin diseases, as well as hearing disorders. It has been shown that the activation is related to the mechanical action of ultrasound, for example, by the radiation force, as well as to the direct action of ultrasonic vibrations on nerve fibers. The action of the radiation force is promising for the realization of the possibility of blind and even deaf-and-blind people to perceive text information on a display using tactile sensations caused by ultrasound. Very different methods of using ultrasound for local stimulation of neuroreceptor structures are discussed in this review. Among them are practical methods that have been already tested in a clinic, as well as pretending to be sensational methods that are hardly feasible in the foreseeable future.

Keywords

focused ultrasound sensory information neuroreceptor structures sensations stimulation radiation force medicine physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Lele, Ultrasonics 5, 105 (1967).CrossRefGoogle Scholar
  2. 2.
    W. J. Fry, V. J. Wulff, D. Tucker, and F. J. Fry, J. Acoust. Soc. Am. 22, 867 (1950).ADSCrossRefGoogle Scholar
  3. 3.
    W. J. Fry, J. W. Barnard, F. J. Fry, and J. F. Brennan, Am. J. Phys. Med. 34, 413 (1955).Google Scholar
  4. 4.
    F. J. Fry, H. W. Ades, and W. J. Fry, Science 127(3289), 83 (1958).ADSCrossRefGoogle Scholar
  5. 5.
    W. J. Fry, Amer. J. Phys. Med. 37, 143 (1958).Google Scholar
  6. 6.
    W. J. Fry and F. J. Fry, IRE Trans. Med. Electron. 7, 166 (1960).CrossRefGoogle Scholar
  7. 7.
    H. T. Ballantine, E. Bell, and J. Manlapaz, J. Neurosurg. 17, 858 (1960).CrossRefGoogle Scholar
  8. 8.
    P. P. Lele, Exp. Neurol. 8, 47 (1963).CrossRefGoogle Scholar
  9. 9.
    R. R. Young and E. Henneman, Science 134(3489), 1521 (1961).ADSCrossRefGoogle Scholar
  10. 10.
    R. R. Young and E. Henneman, Arch. Neurol. 4, 83 (1961).CrossRefGoogle Scholar
  11. 11.
    P. O. Makarov and A. V. Lonskii, Biofizika 10, 181 (1965).Google Scholar
  12. 12.
    A. V. Lonskii, P. O. Makarov, and B. S. Tuchkov, Tsitologiya 11, 1401 (1969).Google Scholar
  13. 13.
    P. O. Makarov, Fiziol. Zh. SSSR 59(1), 39 (1973).Google Scholar
  14. 14.
    G. V. Gershuni, E. M. Tsirulnikov, L. R. Gavrilov, V. I. Pudov, and A. S. Rosenblyum, Dokl. Akad. Nauk SSSR 251, 763 (1980).Google Scholar
  15. 15.
    I. A. Vartanyan, L. R. Gavrilov, V. D. Zharskaya, G. I. Ratnikova, and E. M. Tsirulnikov, Zh. Evol. Biokhim. Fiziol. 17, 512 (1981).Google Scholar
  16. 16.
    G. V. Gershuni and E. M. Tsirulnikov, Fiziol. Chel. 7, 420 (1981).Google Scholar
  17. 17.
    G. V. Gershuni and E. M. Tsirulnikov, in Physiological Sciences for Medicine (Nauka, Leningrad, 1983), pp. 38–45 [in Russian].Google Scholar
  18. 18.
    E. M. Tsirulnikov, Zh. Evol. Biokhim. Fiziol 21, 591 (1985).Google Scholar
  19. 19.
    E. M. Tsirulnikov, A. G. Gurgenidze, I. A. Vartanyan, I. V. Daneliya, and V. A. Shubaev, Fiziol. Chel. 11, 241 (1985).Google Scholar
  20. 20.
    I. A. Vartanyan, L. R. Gavrilov, G. V. Gershuni, A. S. Rosenblyum, and E. M. Tsirulnikov, Sensory Reception: Research with the Use of Focused Ultrasound (Nauka, Leningrad, 1985) [in Russian].Google Scholar
  21. 21.
    E. M. Tsirulnikov, A. G. Gurgenidze, and I. A. Vartanyan, Fiziol. Chel. 12, 310 (1986).Google Scholar
  22. 22.
    E. M. Tsirulnikov, L. D. Enin, and I. L. Potekhina, Neirofiziologiya 24, 529 (1992).Google Scholar
  23. 23.
    L. D. Enin, E. M. Tsirulnikov, I. L. Potekhina, and L. R. Gavrilov, Zh. Evol. Biokhim. Fiziol. 28, 353 (1992).Google Scholar
  24. 24.
    E. M. Tsirulnikov, L. R. Gavrilov, and I. Davis, Sens. Sist. 14, 234 (2000).Google Scholar
  25. 25.
    E. M. Tsirulnikov, E. S. Titkov, G. A. Oganesyan, A. I. Smirnova, and A. M. Markovich, Sens. Sist. 21, 299 (2007).Google Scholar
  26. 26.
    W. J. Fry, J. Acoust. Soc. Am. 44, 919 (1968).ADSCrossRefGoogle Scholar
  27. 27.
    V. A. Tsukerman, Biofizika 14, 300 (1969).Google Scholar
  28. 28.
    O. S. Adrianov, N. I. Vykhodtseva, V. F. Fokin, and V. M. Avirom, Byull. Eksp. Biol. Med. 98(7), 115 (1984).Google Scholar
  29. 29.
    O. S. Adrianov, N. I. Vykhodtseva, and L. R. Gavrilov, Fiziol. Zh. SSSR Sechenova 70, 1157 (1984).Google Scholar
  30. 30.
    O. S. Adrianov, N. I. Vykhodtseva, V. F. Fokin, N. A. Uranova, V. M. Avirom, and M. Galogazha, Byull. Eksp. Biol. Med. 98, 760 (1984).CrossRefGoogle Scholar
  31. 31.
    N. I. Vykhodtseva and V. I. Koroleva, Dokl. Akad. Nauk SSSR 287, 248 (1986).Google Scholar
  32. 32.
    V. I. Koroleva, N. I. Vykhodtseva, and V. A. Elagin, Neirofiziologiya 18(1), 55 (1986).Google Scholar
  33. 33.
    V. A. Velling and S. P. Shklyaruk, Fiziol. Zh. SSSR Sechenova 73, 708 (1987).Google Scholar
  34. 34.
    L. R. Gavrilov and E. M. Tsirulnikov, Focused Ultrasound in Physiology and Medicine (Nauka, Leningrad, 1980) [in Russian].Google Scholar
  35. 35.
    L. R. Gavrilov, G. V. Gershuni, O. B. Ilyinski, L. A. Popova, M. G. Sirotyuk, and E. M. Tsirulnikov, Sov. Phys. Acoust. 19, 332 (1973).Google Scholar
  36. 36.
    L. R. Gavrilov, G. V. Gershuni, O. B. Ilyinski, E. M. Tsirulnikov, and E. E. Shchekanov, Reception and Focused Ultrasound (Nauka, Leningrad, 1976) [in Russian].Google Scholar
  37. 37.
    L. R. Gavrilov, G. V. Gershuni, O. B. Ilyinski, and E. M. Tsirulnikov, Brain Res. 135, 265 (1977).CrossRefGoogle Scholar
  38. 38.
    L. D. Rozenberg, in Physics and Engineering of High Power Ultrasound, Vol. 1: Sources of High Power Ultrasound, Ed. by L. D. Rozenberg (Nauka, Moscow, 1967) [in Russian].Google Scholar
  39. 39.
    L. Bergmann, Der Ultraschall und seine Anwendung in Wissenschaft und Technik (Zurich, 1954; Inostr. Liter., Moscow, 1956).Google Scholar
  40. 40.
    E. M. Tsirulnikov and A. G. Gurgenidze, Zh. Evol. Biokhim. Fiziol. 26, 267 (1990).Google Scholar
  41. 41.
    E. M. Tsirulnikov, I. A. Vartanyan, I. Yu. Shcherbakova, L. E. Voinova, and K. N. Sokolov, Zh. Evol. Biokhim. Fiziol. 26, 795 (1990).Google Scholar
  42. 42.
    E. M. Tsirulnikov, in Sensory Systems. Morphophysiological and Behavioral Aspects (Nauka, Leningrad, 1977), pp. 104–124 [in Russian].Google Scholar
  43. 43.
    E. M. Tsirulnikov and E. E. Shchekanov, in Sensory Functions in the Skin in Primates with Special Reference to Man (Pergamon, Oxford, New York, 1976), pp. 399–411.Google Scholar
  44. 44.
    E. M. Tsirulnikov, in Sensory Reception: Research with the Use of Focused Ultrasound, I. A. Vartanyan, L. R. Gavrilov, G. V. Gershuni, A. S. Rosenblyum, and E. M. Tsirulnikov (Nauka, Leningrad, 1985), pp. 89–90 [in Russian].Google Scholar
  45. 45.
    L. R. Gavrilov, E. M. Tsirulnikov, and E. E. Shchekanov, Sov. Phys. Acoust. 21, 437 (1975).Google Scholar
  46. 46.
    L. R. Gavrilov, E. M. Tsirulnikov, and E. E. Shchekanov, Fiziol. Zh. SSSR Sechenova 61, 213 (1975).Google Scholar
  47. 47.
    K. R. Foster and M. L. Wiederhold, J. Acoust. Soc. Am. 63, 1199 (1978).ADSCrossRefGoogle Scholar
  48. 48.
    L. R. Gavrilov, V. I. Pudov, A. S. Rosenblyum, E. M. Tsirulnikov, A. V. Chepkunov, and E. E. Shchekanov, Sov. Phys. Acoust. 23, 318 (1977).Google Scholar
  49. 49.
    L. R. Gavrilov, Ultrasonics 22, 132 (1984).CrossRefGoogle Scholar
  50. 50.
    G. V. Gershuni, in Physiological Methods in Clinical Practice (Medgiz, Leningrad, 1959), pp. 349–406 [in Russian].Google Scholar
  51. 51.
    B. M. Sagalovich and G. G. Melkumova, Biofizika 11, 156 (1966).Google Scholar
  52. 52.
    B. M. Sagalovich and K. P. Pokryvalova, Biofizika 9, 138 (1964).Google Scholar
  53. 53.
    G. R. Broun, L. R. Gavrilov, G. G. Zhadan, O. B. Ilyinski, and E. M. Tsirulnikov, Zh. Evol. Biokhim. Fiziol. 16, 352 (1980).Google Scholar
  54. 54.
    L. R. Gavrilov, V. A. Kovalev, and E. M. Tsirulnikov, Sov. Phys. Acoust. 24, 231 (1978).Google Scholar
  55. 55.
    E. E. Shchekanov, Fiziol. Zh. SSSR Sechenova 66, 1715 (1980).Google Scholar
  56. 56.
    L. R. Gavrilov, E. M. Tsirulnikov, and I. Davies, Ultrasound Med. Biol. 22, 179 (1996).CrossRefGoogle Scholar
  57. 57.
    L. R. Gavrilov and E. M. Tsirulnikov, in Nonlinear Acoustics at the Beginning of 21st Century, Ed. by O. V. Rudenko and O. A. Sapozhnikov (Moscow Gos. Univ., Moscow, 2002), Vol. 1, pp. 445–448 [in Russian].Google Scholar
  58. 58.
    K. Altenberg and S. Kästner, Ann. Physik 11, 161 (1952).ADSCrossRefGoogle Scholar
  59. 59.
    A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Emelianov, Ultrasound Med. Biol. 24, 1419 (1998).CrossRefGoogle Scholar
  60. 60.
    Yu. A. Pishchalnikov, O. A. Sapozhnikov, and T. V. Sinilo, Acoust. Phys. 48, 253 (2002).CrossRefGoogle Scholar
  61. 61.
    O. O. Godovanik, L. R. Gavrilov, O. B. Ilyinski, E. M. Tsirulnikov, and E. E. Shchekanov, Zh. Nevropat. Psikhiatr. 78, 1189 (1978).Google Scholar
  62. 62.
    E. M. Tsirulnikov, V. A. Kudinov, L. N. Monakhov, and I. M. Raznatovskii, Vestn. Dermatol. Venerol., No. 12, 11 (1988).Google Scholar
  63. 63.
    I. Ya. Ashkinazi, V. A. Ishinova, and E. M. Tsirulnikov, Neirofiziologiya 24, 535 (1992).Google Scholar
  64. 64.
    I. Davies, L. R. Gavrilov, and E. M. Tsirulnikov, Pain 67, 17 (1996).CrossRefGoogle Scholar
  65. 65.
    E. M. Tsirulnikov, I. A. Vartanyan, G. V. Gersuni, A. S. Rosenblyum, V. I. Pudov, and L. R. Gavrilov, Ultrasound Med. Biol. 14, 277 (1988).CrossRefGoogle Scholar
  66. 66.
    V. I. Antipov, L. R. Gavrilov, B. E. Mikhalev, V. I. Pudov, A. S. Rosenblyum, E. M. Tsirulnikov, and N. Ya. Shchegoleva, USSR Inventor’s Certificate No. 1152111 (1981).Google Scholar
  67. 67.
    V. I. Antipov, L. R. Gavrilov, V. I. Pudov, A. S. Rosenblyum, and E. M. Tsirulnikov, USSR Inventor’s Certificate No. 1317711 (1983).Google Scholar
  68. 68.
    L. R. Gavrilov, G. V. Gershuni, V. I. Pudov, A. S. Rosenblyum, and E. M. Tsirulnikov, Vestn. Otorinolaringol., No. 2, 3 (1983).Google Scholar
  69. 69.
    V. I. Antipov, L. R. Gavrilov, V. I. Pudov, A. S. Rosenblyum, and E. M. Tsirulnikov, Vestn. Otorinolaringol., No. 1, 32 (1985).Google Scholar
  70. 70.
    R. T. Mihran, F. S. Bames, and H. Wachtel, Biomed. Sci. Instrum. 26, 235 (1990).Google Scholar
  71. 71.
    R. T. Mihran, F. S. Barnes, and H. Wachtel, Ultrasound Med. Biol. 16, 297 (1990).CrossRefGoogle Scholar
  72. 72.
    P. C. Rinaldi, J. P. Jones, F. Reines, and L. R. Price, Brain Res. 558, 36 (1991).CrossRefGoogle Scholar
  73. 73.
    M. R. Bachtold, P. C. Rinaldi, J. P. Jones, F. Reines, and L. R. Price, Ultrasound Med. Biol. 24, 557 (1998).CrossRefGoogle Scholar
  74. 74.
    D. Dalecki, S. Z. Child, C. H. Raeman, and E. L. Carstensen, J. Acoust. Soc. Am. 97(Pt. 1), 3165 (1995).ADSCrossRefGoogle Scholar
  75. 75.
    A. Wright, I. Davies, and J. G. Riddell, Pain 52, 149 (1993).CrossRefGoogle Scholar
  76. 76.
    A. Wright and I. Davies, Neurosci. Lett. 97, 145 (1989).CrossRefGoogle Scholar
  77. 77.
    A. Wright, T. Graven-Nielsen, I. Davies, and L. Arendt-Nielsen, Exp. Brain Res. 144, 475 (2002).CrossRefGoogle Scholar
  78. 78.
    M. Fatemi, P. L. Ogburn, and J. Greenleaf, J. Ultrasound Med. 20, 883 (2001).Google Scholar
  79. 79.
    M. Fatemi and J. Greenleaf, US Patent No. 6709407 (2004).Google Scholar
  80. 80.
    I. A. Vartanyan, N. N. Konstantinova, M. F. Litvinova, and E. M. Tsirulnikov, Sens. Sist. 10(3), 41 (1996).Google Scholar
  81. 81.
    Tsui Po-Hsiang, Wang Shyh-Hau, and Huang Chih-Chung, Ultrasonics 43, 560 (2005).CrossRefGoogle Scholar
  82. 82.
    J. L. Foley, J. W. Little, and S. Vaezy, Muscle and Nerve 37, 241 (2008).CrossRefGoogle Scholar
  83. 83.
    R. Muratore, J. LaManna, E. Szulman, A. Kalisz, M. Lamprecht, M. Simon, Yu Zhe, Xue Nina, and B. Morrison, in Proceedings of the 8th International Symposium on Therapeutic Ultrasound, Ed. by E. S. Ebbini (American Institute of Physics, 2009), pp. 25–29.Google Scholar
  84. 84.
    R. Muratore, J. LaManna, M. Lamprecht, and B. Morrison, in Proceedings of the 38th Annual Ultrasonic Industry Association Symposium, Vancouver, BC Canada, March 23–25, 2009.Google Scholar
  85. 85.
    W. J. Tyler, Y. Tufail, M. Finsterwald, M. L. Tauchmann, E. J. Olson, and C. Majestic, PLoS One 3, e3511 (2008).ADSCrossRefGoogle Scholar
  86. 86.
    V. Colucci, G. Strichartz, F. Jolesz, N. Vykhodtseva, and K. Hynynen, Ultrasound Med. Biol. 35, 1737 (2009).CrossRefGoogle Scholar
  87. 87.
    B. K. Min, A. Bystritsky, K. I. Jung, K. Fischer, Y. Zhang, L. S. Maeng, S. I. Park, Y. A. Chung, F. A. Jolesz, and S. S. Yoo, BMC Neurosci. 12(12), 1 (2011); http://www.biomedcentral.com/1471-2202/12/23 Google Scholar
  88. 88.
    T. Yang, J. Chen, B. Yan, and D. Zhou, Medical Hypotheses 76, 381 (2011).CrossRefGoogle Scholar
  89. 89.
    E. M. Tsirulnikov, E. S. Titkov, G. A. Oganesyan, A. I. Smirnova, and A. M. Markovich, Sens. Sist. 21, 299 (2007).Google Scholar
  90. 90.
    T. Iwamoto, T. Maeda, and H. Shinoda, in Proceedings of the International Conference on Artificial Reality and Telexistence (2001), pp. 121–126.Google Scholar
  91. 91.
    T. Iwamoto and H. Shinoda, in Proceedings of the World Haptics Conference, Pisa, Italy, March 18–25, 2005 (2005), pp. 220–228.Google Scholar
  92. 92.
    T. Iwamoto and H. Shinoda, in Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE Haptics Symposium (2006), pp. 57–61.Google Scholar
  93. 93.
    L. R. Gavrilov, Acoust. Phys. 54, 269 (2008).MathSciNetADSCrossRefGoogle Scholar
  94. 94.
    Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, J. Neural Eng. 7, 056002 (2010). doi: 10.1088/1741-2560/7/5/056002ADSCrossRefGoogle Scholar
  95. 95.
    G. K. Lewis and W. L. Olbricht, Rev. Sci. Instrum. 79, 114302 (2008). http://dx.doi.org/10.1063/1.3020704 ADSCrossRefGoogle Scholar
  96. 96.
    G. K. Lewis and W. L. Olbricht, Rev. Sci. Instrum. 80, 114304 (2009). http://dx.doi.org/10.1063/1.3258207 CrossRefGoogle Scholar
  97. 97.
    T. P. Dawson, US Patent No. 6536440 (2003).Google Scholar
  98. 98.
    Y. Tufail, A. Matyushov, N. Baldwin, M. L. Tauchmann, J. Georges, A. Yoshihiro, S. I. Helms Tillery, and W. J. Tyler, Neuron 66, 681 (2010).CrossRefGoogle Scholar
  99. 99.
    W. J. Tyler, The Neuroscientist, 1 (2010). doi: 10.1177/1073858409348066.Google Scholar
  100. 100.
    V. A. Ishinova, I. A. Vartanyan, and E. M. Tsirulnikov, Sens. Sist. 25, 174 (2011).Google Scholar
  101. 101.
    S. S. Yoo, A. Bystritsky, J. H. Lee, Y. Zhang, K. Fischer, B. K. Min, N. McDannold, A. Pascual-Leone, and F. Jolesz, NeuroImage 56, 1267 (2011).CrossRefGoogle Scholar
  102. 102.
    B.-K. Min, P. S. Yang, M. Bohlke, S. Park, D. R. Vago, T. J. Maher, and S.-S. Yoo, Inc. Int. J. Imag. Syst. Technol. 21, 232 (2011).CrossRefGoogle Scholar
  103. 103.
    A. Bystritsky, A. S. Korb, P. K. Douglas, M. S. Cohen, W. P. Melega, A. P. Mulgaonkar, A. Desalles, B. K. Min, and S. S. Yoo, Brain Stimulat. Jul. 4(3), 125 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Andreev Acoustics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations