Acoustical Physics

, Volume 58, Issue 1, pp 81–89 | Cite as

Mechanisms for saturation of nonlinear pulsed and periodic signals in focused acoustic beams

  • M. M. Karzova
  • M. V. Averiyanov
  • O. A. Sapozhnikov
  • V. A. Khokhlova
Nonlinear Acoustics

Abstract

Acoustic fields of powerful ultrasound sources with Gaussian spatial apodization and initial excitation in the form of a periodic wave or single pulse are examined based on the numerical solution of the Khokhlov-Zabolotskaya-Kuznetsov equation. The influence of nonlinear effects on the spatial structure of focused beams, as well as on the limiting values of the acoustic field parameters is compared. It is demonstrated that pressure saturation in periodic fields is mainly due to the effect of nonlinear absorption at a shock front, while in pulsed fields is due to the effect of nonlinear refraction. The limiting attainable values for the peak positive pressure in periodic fields turned out to be higher than the analogous values in pulsed acoustic fields. The total energy in a beam of periodic waves decreases with the distance from the source faster than in the case of a pulsed field, but it becomes concentrated within much smaller spatial region in the vicinity of the focus. These special features of nonlinear effect manifestation provide an opportunity to use pulsed beams for more efficient delivery of wave energy to the focus and to use periodic beams for attaining higher values of pressure in the focal region.

Keywords

ultrasound periodic and pulsed signals nonlinear effects focused beams nonlinear absorption nonlinear refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Nauka, Moscow, 1975; Consultants Bureau, New York, 1977).Google Scholar
  2. 2.
    M. A. Averkiou and R. O. Cleveland, J. Acoust. Soc. Am. 106, 102 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    Ultrasound in Medicine. Physical Bases and Application, Ed. by C. Hill, J. Bamber, and G. ter Haar (Wiley, New York, 2002; Fizmatlit, Moscow, 2008).Google Scholar
  4. 4.
    M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49, 369 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    O. V. Rudenko, Phys. Usp. 38, 965 (1995).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    O. V. Rudenko and O. A. Sapozhnikov, Phys. Usp. 47, 907 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    K. A. Naugol’nykh and E. V. Romanenko, Sov. Phys. Acoust. 5, 191 (1959).Google Scholar
  8. 8.
    O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Acoust. Phys. 55, 463 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    M. F. Hamilton, O. V. Rudenko, and V. A. Khokhlova, Acoust. Phys. 43, 39 (1997).ADSGoogle Scholar
  10. 10.
    D. R. Bacon, Ultrasound Med. Biol. 10, 189 (1984).CrossRefGoogle Scholar
  11. 11.
    A. G. Musatov, O. V. Rudenko, and O. A. Sapozhnikov, Sov. Phys. Acoust. 38, 274 (1992).Google Scholar
  12. 12.
    E. A. Filonenko and V. A. Khokhlova, Acoust. Phys. 46, 468 (2000).Google Scholar
  13. 13.
    A. Kurganov and E. Tadmor, J. Comp. Phys. 160, 241 (2000).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Acoust. Phys. 56, 354 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. M. Karzova
    • 1
  • M. V. Averiyanov
    • 1
  • O. A. Sapozhnikov
    • 1
    • 2
  • V. A. Khokhlova
    • 1
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Center for Industrial and Medical Ultrasound, Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations