Acoustical Physics

, Volume 57, Issue 3, pp 334–343 | Cite as

Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays

  • P. V. YuldashevEmail author
  • V. A. Khokhlova
Nonlinear Acoustics


A novel numerical model was developed to simulate three-dimensional nonlinear fields generated by high intensity focused ultrasound (HIFU) arrays. The model is based on the solution to the Westervelt equation; the developed algorithm makes it possible to model nonlinear pressure fields of periodic waves in the presence of shock fronts localized near the focus. The role of nonlinear effects in a focused beam of a two-dimensional array was investigated in a numerical experiment in water. The array consisting of 256 elements and intensity range on the array elements of up to 10 W/cm2 was considered. The results of simulations have shown that for characteristic intensity outputs of modern HIFU arrays, nonlinear effects play an important role and shock fronts develop in the pressure waveforms at the focus.


Shock Front Acoustical Physic Array Element Pressure Amplitude High Intensity Focus Ultrasound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Pernot, J.-F. Aubry, M. Tanter, J.-L. Thomas, and M. Fink, Phys. Med. Biol. 48, 2577 (2003).CrossRefGoogle Scholar
  2. 2.
    K. Hynynen, N. McDannold, G. Clement, F. A. Jolesz, E. Zadicario, R. Killiany, T. Moore, and D. Rosen, Eur. J. Radiol. 59, 149 (2006).CrossRefGoogle Scholar
  3. 3.
    B. Quesson, M. Merle, M. O. Köhler, C. Mougenot, S. Roujol, B. D. de Senneville, and C. T. Moonen, Med. Phys. 37, 2533 (2010).CrossRefGoogle Scholar
  4. 4.
    J. W. Hand, A. Shaw, N. Sadhoo, S. Rajagopal, R. J. Dickinson, and L. R. Gavrilov, Phys. Med. Biol. 54, 5675 (2009).CrossRefGoogle Scholar
  5. 5.
    L. R. Gavrilov and J. W. Hand, IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 125 (2000).CrossRefGoogle Scholar
  6. 6.
    L. R. Gavrilov, Akust. Zh. 49, 604 (2003) [Acoust. Phys. 49, 508 (2003)].Google Scholar
  7. 7.
    S. Bobkova, L. Gavrilov, V. Khokhlova, A. Shaw, and J. Hand, Ultrasound. Med. Biol. 36, 888 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Pernot, M. Tanter, and M. Fink, Ultrasound. Med. Biol. 30, 1239 (2004).CrossRefzbMATHGoogle Scholar
  9. 9.
    M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 124, 2406 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Akust. Zh. 55, 445 (2009) [Acoust. Phys. 55, 463 (2009)].Google Scholar
  11. 11.
    V. A. Burov, N. P. Dmitrieva, and O. V. Rudenko, Dokl. Akad. Nauk, Biokhim. Biofiz. Mol. Biol. 383, 401 (2002).Google Scholar
  12. 12.
    M. Canney, V. Khokhlova, O. Bessonova, M. Bailey, and L. Crum, Ultrasound. Med. Biol. 36, 250 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 104, 2061 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    V. A. Khokhlova, A. E. Ponomarev, M. A. Averk’yu, and L. A. Crum, Akust. Zh. 52, 560 (2006) [Acoust. Phys. 52, 481 (2006)].Google Scholar
  15. 15.
    Y. Jing and R. Cleveland, J. Acoust. Soc. Am. 122, 1352 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    W. Kreider, O. Sapozhnikov, V. Khokhlova, N. Farr, M. Bailey, P. Kaczkowski, A. Partanen, and D. Brazzle, in Proceedings of the 2nd International Symposium on Current and Future Applications of MR-guided Focused Ultrasound 2010, 17–20 Oct. 2010, Washington DC, USA, p. 79.Google Scholar
  17. 17.
    P. J. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963).ADSCrossRefGoogle Scholar
  18. 18.
    R. J. Zemp, J. Tavakkoli, and R. S. Cobbold, J. Acoust. Soc. Am. 113, 139 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    T. Varslot and G. Taraldsen, IEEE T. Ultrason. Ferr. 52, 1473 (2005).CrossRefGoogle Scholar
  20. 20.
    P. V. Yuldashev, L. M. Krutyanskii, V. A. Khokhlova, A. P. Brysev, and F. V. Bunkin, Akust. Zh. 56, 463 (2010) [Acoust. Phys. 56, 467 (2010)].Google Scholar
  21. 21.
    P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 507 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Kurganov and E. Tadmor, J. Comp. Phys. 160, 241 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    M. V. Aver’yanov, Candidate’s Dissertation in Mathematical Physics (Moscow, 2008).Google Scholar
  24. 24.
    V. A. Khokhlova, R. Souchon, J. Tavakkoli, O. A. Sapozhnikov, and D. Cathignol, J. Acoust. Soc. Am. 110, 95 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    E. A. Filonenko and V. A. Khokhlova, Akust. Zh. 47, 541 (2001) [Acoust. Phys. 47, 468 (2001)].Google Scholar
  26. 26.
    O. V. Bessonova, V. A. Khokhlova, M. S. Canney, M. R. Bailey, and L. A. Crum, Akust. Zh. 56, 380 (2010) [Acoust. Phys. 56, 354 (2010)].Google Scholar
  27. 27.
    O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Nauka, Moscow, 1975; Consultants Bureau, New York, 1977).Google Scholar
  28. 28.
    T. Christopher, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2188 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Center for Industrial and Medical Ultrasound, Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations