Acoustical Physics

, Volume 55, Issue 4–5, pp 630–637 | Cite as

A comparative study of systems used for dynamic focusing of ultrasound

Article

Abstract

A comparative study of two methods used for dynamic focusing of ultrasound: the conventional phased arrays and a new method based on time reversal of acoustic signals is carried out. A laboratory model of the focusing system based on time reversal is developed and manufactured. One of the principal elements of the system is a reverberator with several piezoelectric transducers attached to its walls. Experiments are carried out to demonstrate the ability of such a system to generate one focus or several foci and to steer them electronically at considerable distances (50 mm at minimum) off the axis of the focusing system without causing the appearance of any grating lobes or other secondary intensity maxima. The focusing properties of the system are compared with the results of numerical simulation of two-dimensional phased arrays, whose parameters are taken to be typical for the arrays used in extracorporeal surgery. The important role of randomization is demonstrated for both of the aforementioned focusing methods. The prospects of practical application of the two methods are discussed.

PACS numbers

43.60.Tj 43.80.Sh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. T. O’Neil, J. Acoust. Soc. Am. 21, 516 (1949).CrossRefADSGoogle Scholar
  2. 2.
    G. Kossoff, Ultrasound Med. Biol. 5, 359 (1979).CrossRefGoogle Scholar
  3. 3.
    R. J. Lalonde, A. Worthington, and J. W. Hunt, IEEE Trans. Ultras. Ferroelec. Freq. Control 40, 592 (1993).CrossRefGoogle Scholar
  4. 4.
    E. S. Ebbini and C. A. Cain, IEEE Trans. Biomed. Eng. 38, 634 (1991).CrossRefGoogle Scholar
  5. 5.
    D. R. Daum and K. Hynynen, IEEE Trans. Ultras. Ferroelec. Freq. Control 46, 1254 (1999).CrossRefGoogle Scholar
  6. 6.
    R. J. McGough, M. L. Kessler, and E. S. Ebbini, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 43, 1074 (1996).CrossRefGoogle Scholar
  7. 7.
    E. S. Ebbini and C. A. Cain, IEEE Trans. Ultrason. Ferroelec. Freq. Control 36, 540 (1989).CrossRefGoogle Scholar
  8. 8.
    W. L. Nyborg, Physical Mechanisms for Biological Effects of Ultrasound, DHEW 78-8062 (US Government Printing Office, Washington, DC, 1977).Google Scholar
  9. 9.
    M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, New York, 1980).Google Scholar
  10. 10.
    L. R. Gavrilov and J. W. Hand, IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 125 (2000).CrossRefGoogle Scholar
  11. 11.
    J. W. Hand and L. R. Gavrilov, Great Britain Patent No. GB2347043.Google Scholar
  12. 12.
    J. W. Hand and L. R. Gavrilov, US Patent No. 6488630.Google Scholar
  13. 13.
    D. H. Turnbull and F. S. Foster, IEEE Trans on Ultras. Ferroel. Freq. Control 38, 320 (1991).CrossRefGoogle Scholar
  14. 14.
    S. A. Goss, L. A. Frizzell, J. T. Kouzmanoff, et al., IEEE Trans. Ultras. Ferroelec. Freq. Control 43, 1111 (1996).CrossRefGoogle Scholar
  15. 15.
    L. R. Gavrilov and J. Hand, Akust. Zh. 46, 456 (2000) [Acoust. Phys. 46, 390 (2000)].Google Scholar
  16. 16.
    L. R. Gavrilov, Akust. Zh. 49, 604 (2003) [Acoust. Phys. 49, 508 (2003)].Google Scholar
  17. 17.
    L. R. Gavrilov, Akust. Zh. 54, 315 (2008) [Acoust. Phys. 54, 270 (2008)].MathSciNetGoogle Scholar
  18. 18.
    M. Fink, G. Montaldo, and M. Tanter, Ann. Rev. Biomed. Eng. 5, 465 (2003).CrossRefGoogle Scholar
  19. 19.
    M. Fink, Sci. Amer., p. 91 (Nov., 1999).Google Scholar
  20. 20.
    C. Draeger and M. Fink, J. Acoust. Soc. Am. 105, 611 (1999).CrossRefADSGoogle Scholar
  21. 21.
    C. Draeger, J.-C. Aime, and M. Fink, J. Acoust. Soc. Am. 105, 618 (1999).CrossRefADSGoogle Scholar
  22. 22.
    N. Quieffin, S. Catheline, R. K. Ing, and M. Fink, J. Acoust. Soc. Am. 115, 1955 (2004).CrossRefADSGoogle Scholar
  23. 23.
    A. Sutin and A. Sarvazyan, in Proc. World Congress on Ultrasonics, Paris, France, 2003, p. 1019.Google Scholar
  24. 24.
    B. K. Choi, A. Sutin, and A. Sarvazyan, Proc. of the 2006 IEEE International Ultrasonics Symposium, Vancouver, Canada, 2006, p. 2177.Google Scholar
  25. 25.
    L. Fillinger, A. Sutin, and A. Sarvazyan, J. Acoust. Soc. Am. 123, 3338 (2008).CrossRefADSGoogle Scholar
  26. 26.
    A. Sarvazyan, J. Acoust. Soc. Am. 123, 3429 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. P. Sarvazyan
    • 1
  • L. Fillinger
    • 1
  • L. R. Gavrilov
    • 2
  1. 1.Artann LaboratoriesTrentonUSA
  2. 2.Andreev Acoustics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations