Acoustical Physics

, Volume 55, Issue 1, pp 100–107 | Cite as

Amplitude dependent internal friction and generation of harmonics in granite resonator

  • V. E. Nazarov
  • A. B. Kolpakov
  • A. V. Radostin
Acoustics of Structurally Inhomogeneous Solid Media. Geological Acoustics


The results of experimental and theoretical studies of low-frequency effects of amplitude dependent internal friction (nonlinear losses and resonance frequency shift) and generation of second and third harmonics in an acoustic bar resonator made of Karelian granite are presented. The analytical description of the observed effects is performed within the framework of phenomenological hysteretic equations of state containing elastic and inelastic hysteresis. It was shown that elastic cubic hysteresis is manifested at small amplitudes of strains, whereas superposition of elastic and inelastic quadratic hysteresises occurs at large amplitudes of strain. Relative weights of these hysteresises and effective parameters of acoustic nonlinearity of granite are determined.

PACS numbers

43.25.Ba 43.25.Dc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, Phys. Earth Planet. Inter. 50(1), 65 (1988).CrossRefADSGoogle Scholar
  2. 2.
    V. E. Nazarov, Fiz. Met. Metalloved., No. 3, 172 (1991).Google Scholar
  3. 3.
    S. V. Zimenkov and V. E. Nazarov, Fiz. Zemli, No. 1, 13 (1993).Google Scholar
  4. 4.
    R. A. Guyer and P. A. Johnson, Phys. Today, No. 4, 30 (1999).Google Scholar
  5. 5.
    L. A. Ostrovsky and P. A. Johnson, Riv. Nuovo Cim. 24, 1–46 (2001).Google Scholar
  6. 6.
    O. V. Rudenko, Usp. Fiz. Nauk 176, 77 (2006) [Phys. Usp. 49, 69 (2006)].CrossRefGoogle Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, Oxford, 1986).Google Scholar
  8. 8.
    L. K. Zarembo and V. A. Krasil’nikov, Usp. Fiz. Nauk 102, 549 (1970) [Sov. Phys. Usp. 13, 778 (1970)].Google Scholar
  9. 9.
    L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Physical Acoustics (Nauka, Moscow, 1966) [in Russian].Google Scholar
  10. 10.
    O. V. Rudenko, “Actual Problems in Nonlinear Acoustics,” in Nonlinear Waves-2006, Ed. by A. V. Gaponov and V. I. Nekorkin (IPF RAN, Nizhni Novgorod, 2007) [in Russian].Google Scholar
  11. 11.
    O. V. Rudenko, in Acoustics of Heterogeneous Mediums, Proceedings of the Seminar of Science School of S. A. Rybak (2007), pp. 14–28.Google Scholar
  12. 12.
    A. Granato and K. Lucke, J. Appl. Phys. 27(5), 583 (1956).MATHCrossRefADSGoogle Scholar
  13. 13.
    D. Niblett and J. Wilkes, Usp. Fiz. Nauk 80, 125 (1963).Google Scholar
  14. 14.
    Ultrasounds Methods of Dislocation Study, Collected Vol., Ed. by L. G. Merkulov (Inostr. Literatura, Moscow, 1963) [in Russian].Google Scholar
  15. 15.
    Physical Acoustics, Vol. 4: Applications to Quantum and Solid State Physics, Ed. by U. Mason (Academic Press, New York, 1975; Mir, Moscow, 1969).Google Scholar
  16. 16.
    R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Mir, Moscow, 1972; Academic Press, New York, 1969).Google Scholar
  17. 17.
    S. Asano, J. Phys. Soc. Jpn. 29(4), 952 (1970).CrossRefADSGoogle Scholar
  18. 18.
    A. B. Lebedev, Fiz. Tverd. Tela 41, 1214 (1999) [Phys. Solid State 41, 1105 (1999)].Google Scholar
  19. 19.
    V. E. Nazarov, A. V. Radostin, L. A. Ostrovskiĭ, and I. A. Soustova, Akust. Zh. 49, 405 (2003) [Acoust. Phys. 49, 344 (2003)].Google Scholar
  20. 20.
    G. S. Pisarenko, Vibrations of Mechanical Systems with Allowance for the Imperfect Elasticity of the Material (Naukova Dumka, Kiev, 1970) [in Russian].Google Scholar
  21. 21.
    V. E. Nazarov, A. B. Kolpakov, and A. V. Radostin, Akust. Zh. 53, 254 (2007) [Acoust. Phys. 53, 217 (2007)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. E. Nazarov
    • 1
  • A. B. Kolpakov
    • 1
  • A. V. Radostin
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations