Acoustical Physics

, Volume 53, Issue 2, pp 127–135 | Cite as

Compression and amplification of an ultrasonic pulse reflected from a one-dimensional layered structure

  • A. E. Ponomarev
  • S. I. Bulatitskiĭ
  • O. A. Sapozhnikov
Physical Acoustics


Compression of ultrasonic pulses reflected from layered structures is studied. A short pulse is emitted into water towards a structure consisting of solid plates backed with an air layer. Due to multiple reflections in the structure, the signal is elongated. The reflected signal is received by the same transducer and digitized. After that, the wave is reversed in time and emitted towards the layered structure for the second time; then, the reflected signal is received. Due to the invariance of the processes under the time reversal, the pulse is compressed by the structure: the reflected signal becomes shorter and acquires the waveform of the initial pulse. The possibility of an efficient compression of signals is demonstrated experimentally. Numerical simulations show that the use of more complex structures can considerably increase the compression ratio and produce short signals of a much higher amplitude than that emitted by the transducer. An efficient compression algorithm is proposed.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    M. Fink, Phys. Today 50, 34 (1997).Google Scholar
  3. 3.
    V. A. Zverev, Selected Works (IPF RAN, Nizhni Novgorod, 2004) [in Russian].Google Scholar
  4. 4.
    V. A. Zverev, Akust. Zh. 50, 792 (2004) [Acoust. Phys. 50, 685 (2004)]].MathSciNetGoogle Scholar
  5. 5.
    A. P. Brysev, L. M. Krutyanskiĭ, and V. L. Preobrazhenskiĭ, Usp. Fiz. Nauk 168, 877 (1998) [Phys. Usp. 41, 793 (1998)].CrossRefGoogle Scholar
  6. 6.
    A. P. Brysev, V. G. Mikhalevich, and V. N. Strel’tsov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 660 (2002) [JETP Lett. 75, 543 (2002)].Google Scholar
  7. 7.
    B. Ya. Zel’dovich, N. F. Pilipetskiĭ, and V. V. Shkunov, Phase Conjugation (Nauka, Moscow, 1985) [in Russian].Google Scholar
  8. 8.
    V. V. Ragul’skiĭ, Phase Conjugation at Stimulated Light Scattering (Nauka, Moscow, 1990) [in Russian].Google Scholar
  9. 9.
    H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, J. Acoust. Soc. Am. 103, 3234 (1998).CrossRefADSGoogle Scholar
  10. 10.
    D. R. Jackson and D. R. Dowling, J. Acoust. Soc. Am. 89, 171 (1991).CrossRefADSGoogle Scholar
  11. 11.
    N. Chakroun, M. Fink, and F. Wu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 1087 (1995).CrossRefGoogle Scholar
  12. 12.
    M. Pernot, J.-F. Aubry, M. Tanter, et al., Phys. Med. Biol. 48, 2577 (2003).CrossRefGoogle Scholar
  13. 13.
    G. T. Clement, J. Sun, T. Giesecke, and K. Hynynen, Phys. Med. Biol. 45, 3707 (2000).CrossRefGoogle Scholar
  14. 14.
    G. Montaldo, P. Roux, A. Derode, et al., J. Acoust. Soc. Am. 109, 2481 (2001).Google Scholar
  15. 15.
    L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973; Academic, New York, 1980).Google Scholar
  16. 16.
    G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, Heidelberg, 2001).MATHGoogle Scholar
  17. 17.
    L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953; Inostrannaya Literatura, Moscow, 1959).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. E. Ponomarev
    • 1
  • S. I. Bulatitskiĭ
    • 1
  • O. A. Sapozhnikov
    • 1
  1. 1.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations