Advertisement

Russian Microelectronics

, Volume 48, Issue 6, pp 428–434 | Cite as

A Novel Parameter Identification Approach for C–V–T Characteristics of Multi-Quantum Wells Schottky Diode Using Ant Lion Optimizer

  • W. FilaliEmail author
  • E. Garoudja
  • S. Oussalah
  • M. Mekheldi
  • N. Sengouga
  • M. Henini
Article
  • 7 Downloads

Abstract

We report the capacitance-voltage (CV) characteristics of multi quantum wells Schottky diode. This diode is based on Aluminum gallium arsenide, which is highly promising wide band gap semiconductor for applications in high power electronic and optoelectronic devices. The elaboration process and the characterization phase have been carried out at Nottingham University. The CV characteristics have been measured at different temperature ranging from 20 to 400 K. The barrier height and effective density were than extracted from 1/(C/A)2 plot using heuristic algorithm which called ALO (Ant Lion Optimizer). The accuracy of the extraction method is verified through the gotten results.

Keywords:

ant lion optimizer barrier height capacitance-voltage multi quantum wells Schottky diode 

REFERENCES

  1. 1.
    Physique des semiconducteurs et des composants électroniques, Mathieu, H. and Fanet, H., Eds., Paris: Dunod, 2001, vol. 189.Google Scholar
  2. 2.
    Semiconductor Material and Device Characterization, Schroder, D.K., Ed., Chichester: Wiley, 2015.Google Scholar
  3. 3.
    Physics and Chemistry of III–V Compound Semiconductor Interfaces, Williams, R., Robinson, G., and Wilmsen, C., New York: Plenum, 1985.Google Scholar
  4. 4.
    Hattori, K. and Torii, Y., A new method to fabricate Au/n-type InP Schottky contacts with an interfacial layer, Solid-State Electron., 1991, vol. 34, pp. 527–531.CrossRefGoogle Scholar
  5. 5.
    Viktorovitch, P., Louis, P., Besland, M., and Chovet, A., Electrical characterization of metal-oxide-InP tunnel diodes based on current-voltage, admittance and low frequency noise measurements, Solid-State Electron., 1995, vol. 38, pp. 1035–1043.CrossRefGoogle Scholar
  6. 6.
    Rami, B., Simulation of the temperature and the deep traps effect on the electrical characteristics of GaAs diodes, Ph.D. Thesis, Biskra, Algeria: Univ. Mohamed Khider-Biskra, 2015.Google Scholar
  7. 7.
    Filali, W., Sengouga, N., Oussalah, S., Mari, R.H., Jameel, D., Al Saqri, N.A., Aziz, M., Taylor, D., and Henini, M., Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/ n‑AlGaAs/n-GaAs/n-AlGaAs Schottky diodes, Superlatt. Microstruct., 2017, vol. 111, pp. 1010–1021.CrossRefGoogle Scholar
  8. 8.
    Mari, R.H., DLTS characterisation of defects in III–V compounds semiconductors grown by MBE, Ph.D. Thesis, Univ. of Nottingham, 2011.Google Scholar
  9. 9.
    Mayimele, M., van Rensburg, J.P.J., Auret, F., and Diale, M., Analysis of temperature-dependant current-voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes, Phys. B: Condens. Matter, 2016, vol. 480, pp. 58–62.CrossRefGoogle Scholar
  10. 10.
    Higashiwaki, M., Konishi, K., Sasaki, K., Goto, K., Nomura, K., Thieu, Q.T., Togashi, R., Murakami, H., Kumagai, Y., and Monemar, B., Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n–Ga2O3 drift layers grown by halide vapor phase epitaxy, Appl. Phys. Lett., 2016, vol. 108, p. 133503.CrossRefGoogle Scholar
  11. 11.
    Cheung, S. and Cheung, N., Extraction of Schottky diode parameters from forward current-voltage characteristics, Appl. Phys. Lett., 1986, vol. 49, pp. 85–87.CrossRefGoogle Scholar
  12. 12.
    Karaboga, N., Kockanat, S., and Dogan, H., Parameter determination of the Schottky barrier diode using by artificial bee colony algorithm, in Proceedings of the 2011 International Symposium on Innovations in Intelligent Systems and Applications,2011, pp. 6–10.Google Scholar
  13. 13.
    Zeghdar, K., Dehimi, L., Saadoune, A., and Sengouga, N., Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode, J. Semicond., 2015, vol. 36, p. 124002.CrossRefGoogle Scholar
  14. 14.
    Fu, R., Grekov, A.E., Peng, K., and Santi, E., Parameter extraction procedure for a physics-based power SiC Schottky diode model, IEEE Trans. Ind. Appl., 2014, vol. 50, pp. 3558–3568.CrossRefGoogle Scholar
  15. 15.
    Naik, S.S. and Reddy, V.R., Electrical transport characteristics of Pd/V/N-InP Schottky diode from IVT and CVT measurements, J. Nano Electron. Phys., 2011, vol. 3, pp. 1048–1055.Google Scholar
  16. 16.
    Jayawardena, A., Ahyi, A.C., and Dhar, S., Analysis of temperature dependent forward characteristics of Ni/β-Ga2O3 Schottky diodes, Semicond. Sci. Technol., 2016, vol. 31, p. 115002.CrossRefGoogle Scholar
  17. 17.
    Ferhat-Hamida, A., Ouennoughi, Z., Hoffmann, A., and Weiss, R., Extraction of Schottky diode parameters including parallel conductance using a vertical optimization method, Solid-State Electron., 2002, vol. 46, pp. 615–619.CrossRefGoogle Scholar
  18. 18.
    Toumi, S. and Ouennoughi, Z., A vertical optimization method for a simultaneous extraction of the five parameters characterizing the barrier height in the Mo/4H–SiC Schottky contact, Indian J. Phys., 2019, pp. 1–8.Google Scholar
  19. 19.
    Wang, K. and Ye, M., Parameter determination of Schottky-barrier diode model using differential evolution, Solid-State Electron., 2009, vol. 53, pp. 234–240.CrossRefGoogle Scholar
  20. 20.
    Garoudja, E., Kara, K., Chouder, A., and Silvestre, S., Parameters extraction of photovoltaic module for long-term prediction using artifical bee colony optimization, in Proceedings of the 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT),2015, pp. 1–6.Google Scholar
  21. 21.
    Mirjalili, S., The ant lion optimizer, Adv. Eng. Software, 2015, vol. 83, pp. 80–98.CrossRefGoogle Scholar
  22. 22.
    Mirjalili, S., Jangir, P., and Saremi, S., Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems, Appl. Intell., 2017, vol. 46, pp. 79–95.CrossRefGoogle Scholar
  23. 23.
    Properties of Aluminium Gallium Arsenide, Adachi, S., Ed., London: IET, 1993.Google Scholar
  24. 24.
    Garoudja, E., Chouder, A., Kara, K., and Silvestre, S., An enhanced machine learning based approach for failures detection and diagnosis of PV systems, Energy Convers. Manage., 2017, vol. 151, pp. 496–513.CrossRefGoogle Scholar
  25. 25.
    Guha, D., Roy, P.K., and Banerjee, S., Ant lion optimization: a novel algorithm applied to load frequency control problem in power system, in Proceedings of the International Conference on Frontiers in Optimization: Theory and Applications,2016, pp. 195–210.Google Scholar
  26. 26.
    Fritah, A., Extraction des paramètres électrique d’une diode à barrière de Schottky (SBD) à base de phosphure d’indium de type n (n-InP) par IVT et CVT, Ph.D. Thesis, Biskra: Univ. Mohamed Khider-Biskra, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • W. Filali
    • 1
    Email author
  • E. Garoudja
    • 1
  • S. Oussalah
    • 2
  • M. Mekheldi
    • 1
  • N. Sengouga
    • 3
  • M. Henini
    • 4
  1. 1.Plateforme Technologique en Micro-Fabrication, Centre de Développement des Technologies AvancéesBaba Hassen, AlgiersAlgeria
  2. 2.Microelectronics and Nanotechnology Division, Centre de Développement des Technologies AvancéesBaba Hassen, AlgiersAlgeria
  3. 3.Laboratory of Metallic and Semiconducting Materials, Université Mohamed Khider BiskraBiskra RP, B.P 455Algeria
  4. 4.School of Physics and Astronomy, Nottingham Nanotechnology and Nano-Science Center, University of NottinghamNottinghamUK

Personalised recommendations