Advertisement

Russian Microelectronics

, Volume 47, Issue 6, pp 427–433 | Cite as

Etching of SiC in Low Power Inductively-Coupled Plasma

  • A. A. OsipovEmail author
  • S. E. Aleksandrov
  • Yu. V. Solov’ev
  • A. A. Uvarov
  • A. A. Osipov
Article
  • 7 Downloads

Abstract

The peculiarities of etching 4H silicon carbide (4H-SiC) in F-containing inductively-coupled plasma at lowered values of power absorbed in an RF discharge are considered. The application of the initial SF6/O2 mixture yielded the most promising results in order to achieve a defect-free morphology of the etching surface of SiC. The influence of bias voltage applied to the substrate holder on the etching rate is identified. The maximum rate of etching in our experiments was 840 nm/min. It is shown that the additional treatment of SiC surface in Ar plasma positively affects the morphology of the etching surface, minimizing the surface density of various defects.

Notes

REFERENCES

  1. 1.
    Ivanov, P.A. and Chelnokov, V.E., Semiconductor silicon carbide—technology and devices, overview, Semiconductors, 1995, vol. 29, no. 11, pp. 1003–1013.Google Scholar
  2. 2.
    Turkin, A., Overview of the development of semiconductor heterostructures based on gallium nitride (GAN), Poluprovodn. Svetotekh., 2011, vol. 6, no. 14, pp. 6–9.Google Scholar
  3. 3.
    Gol’tsova, M., Power semiconductor electronics. Holding much promise technology becomes a reality, Elektron.: NTB, 2014, no. 4, pp. 54–71.Google Scholar
  4. 4.
    Rosker, M., Bozada, C., Deitrich, H., Hung, A., Via, D., Binari, S., Vivierios, E., Cohen, E., and Hodiak, J., The DARPA wide band gap semiconductors for RF applications (WBGS-RF) program: phase II results, in Proceedings of the International CS MANTECH Conference, May 18–21, 2009, Tampa, FL. Google Scholar
  5. 5.
    Jin, H., Qin, L., Zhang, L., Zeng, X., and Yang, R., Review of wide band-gap semiconductors technology, MATEC Web of Conf., 2016, vol. 40, p. 01006.Google Scholar
  6. 6.
    Capano, M.A. and Trew, R.J., Silicon carbide electronic materials and devices, MRS Bull., 1997, vol. 22, no. 3, pp. 19–23.CrossRefGoogle Scholar
  7. 7.
    Seidman, L.A., Formation of three-dimensional structures in silicon carbide substrates by plasmochemistry etching, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2015, vol. 18, no. 3, pp. 157–171.Google Scholar
  8. 8.
    Osipov, K.Yu. and Velikovskiy, L.E., Formation technology of through metallized holes to sources of high-power GaN/SiC high electron mobility transistors, Semiconductors, 2012, vol. 46, no. 9, pp. 1216–1220.CrossRefGoogle Scholar
  9. 9.
    Ekinci, H., Kuryatkov, V.V., Mauch, D.L., Dickens, J.C., and Nikishin, S.A., Plasma etching of n-type 4H- SiC for photoconductive semiconductor switch applications, J. Electron. Mater., 2015, vol. 44, no. 5, pp. 1300–1305.CrossRefGoogle Scholar
  10. 10.
    Voss, L.F., Ip, K., Pearton, S.J., Shul, R.J., Overberg, M.E., Baca, A.G., Sanchez, C., Stevens, J., Martinez, M., Armendariz, M.G., and Wouters, G.A., SiC via fanrication for wide-band-gap high electron mobility transistor/microwave monolithic integrated circuit devices, J. Vac. Technol. B, 2008, vol. 26, no. 2, pp. 487–494.CrossRefGoogle Scholar
  11. 11.
    Okamoto, N., Ohki, T., Masuda, S., Kanamura, M., Inoue, Y., Makiyama, K., Imanishi, K., Shigematsu, H., Kikkawa, T., Joshin, K., and Hara, N., SiC backside via-hole process for GaN HEMT MMICs using high etch rate ICP etching, in Proceedings of the International CS MANTECH Conference, May 18–21, 2009, Tampa, FL.Google Scholar
  12. 12.
    Jiang, L., Cheung, R., Brown, R., and Mount, A., Inductively coupled plasma etching of SiC in SF6/O2 and etch-induced chemical bonding modifications, J. Appl. Phys., 2003, vol. 93, no. 3, pp. 1376–1383.CrossRefGoogle Scholar
  13. 13.
    Jiang, L. and Cheung, R., Impact of Ar addition to inductively coupled plasma etching of SiC in SF6/O2, Microelectron. Eng., 2004, vols. 73–74, pp. 306–311.CrossRefGoogle Scholar
  14. 14.
    Osipov, A.A., Alexandrov, S.E., and Osipov, Ar.A., Optimization of technological parameters in plasma chemical etching of quartz single crystals, Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 865–870.CrossRefGoogle Scholar
  15. 15.
    Kathalingam, A., Kim, M.-R., Chae, Y.-S., Sudhakar, S., Mahalingam, T., and Rhee, J.-K., Self assembled micro masking effect in the fabrication of SiC nanopillars by ICP-RIE dry etching, Appl. Surf. Sci., 2011, vol. 257, no. 9, pp. 3850–3855.CrossRefGoogle Scholar
  16. 16.
    Kim, D.W., Lee, H.Y., Park, B.J., Kim, H.S., Sung, Y.J., Chae, S.H., Ko, Y.W., and Yeom, G.Y., High rate etching of 6H-SiC in SF6-based magnetically-enhanced inductively coupled plasmas, Thin Solid Films, 2004, vols. 447–448, pp. 100–104.Google Scholar
  17. 17.
    Plank, N.O.V., Blauw, M.A., van der Drift, E.W.J.M., and Cheung, R., The etching of silicon carbide in inductively coupled SF6/O2 plasma, J. Phys. D: Appl. Phys., 2003, vol. 36, no. 5, pp. 482–487.CrossRefGoogle Scholar
  18. 18.
    Okamoto, N., Elimination of pillar associated with micropipe of SiC in high-rate inductively coupled plasma etching, J. Vac. Sci. Technol., A, 2009, vol. 27, no. 2, pp. 295–300.CrossRefGoogle Scholar
  19. 19.
    Choi, J.H., Latu-Romain, L., Bano, E., Dhalluin, F., Chevolleau, T., and Baron, T., Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching, J. Phys. D: Appl. Phys., 2012, vol. 45, no. 23, p. 235204.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Osipov
    • 1
    Email author
  • S. E. Aleksandrov
    • 1
  • Yu. V. Solov’ev
    • 1
  • A. A. Uvarov
    • 2
  • A. A. Osipov
    • 3
  1. 1.Peter the Great St. Petersburg Polytechnical UniversitySt. PetersburgRussia
  2. 2.CORIALBerninFrance
  3. 3.Institute of Mineralogy, Urals Branch, Russian Academy of SciencesMiassRussia

Personalised recommendations