Russian Microelectronics

, Volume 48, Issue 1, pp 13–27 | Cite as

Masking Properties of Structures Based on a Triacrylamide Derivative of Polyfluorochalcone at Wet and Reactive Ion Etching

  • S. V. DerevyashkinEmail author
  • E. A. Soboleva
  • V. V. Shelkovnikov
  • A. I. Malyshev
  • V. P. Korolkov


The masking properties are studied for polymeric structures based on a triacrylamide derivative of polyfluorochalcone at wet etching in aqueous acidic (H2SO4, H3PO4) and alkaline (NaOH) environments, as well as at reactive ion etching (CF4). The kinetic curves are obtained and the etching rates inherent in the photoresists are estimated. A comparison with commercially available photoresists AZ4562 and SU-8 is performed.



Experiments on reactive etching were carried out at the expense of subsidies for the financial support of the fulfillment of the state task (no. AAAA-A17-117052210002-7) at the Institute of Physics and Power Engineering, SB RAS.


  1. 1.
    Bukatin, A.S., Dudnikov, D.A., Goryunov, V.A., Korzin, V.V., and Burkov, Yu.G., Formation of microstructures of high-speed inkjet control systems based on SU-8 and PDMS photoresist, Izv. Volg. Tekh. Univ., 2017, no. 5, pp. 55–59.Google Scholar
  2. 2.
    Khrolenko, T.S., Torgash, T.N., Yakovlev, A.N., and Pertsel’, Ya.M., LTCC multilayer thin-film GIS boards, Tekh. Radiosvyazi, 2017, no. 1 (32), pp. 79–91.Google Scholar
  3. 3.
    Lemma, E.D., Rizzi, F., Dattoma, T., Spagnolo, B., Sileo, L., Qualtieri, A., De Vittorio, M., and Pisanello, F., Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography, IEEE Trans. Nanotechnol., 2017, vol. 16, no. 1, pp. 23–31.Google Scholar
  4. 4.
    Mironnikov, N.G., Korol’kov, V.P., Derevyanko, D.I., and Shelkovnikov, V.V., Optical methods for the formation of a multilevel microrelief in thin films of the hybrid photopolymer material GIBRIMER-TATS, Interekspo Geo-Sibir’, 2016, vol. 5, no. 2, pp. 15–19.Google Scholar
  5. 5.
    Lagov, P.B., Drenin, A.S., Rogovskii, E.S., and Lednev, A.M., Research of possibilities for improving the energy and mass parameters of solar cells using plasma-chemical etching, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2013, no. 3 (63), pp. 51–53.Google Scholar
  6. 6.
    Speshilova, A.B., Solov’ev, Y.V., and Alexandrov, S.E., Plasma chemical etching of photoresist layers based on diazonaphthoquinones in an installation with remote oxygen plasma, Russ. J. Appl. Chem., 2016, vol. 89, no. 8, pp. 1317–1321.CrossRefGoogle Scholar
  7. 7.
    Jang, H.S., Choi, H.-J., and Kang, S.M., Formation of p-silicon wire by electrochemical etching using positive photoresist as an etch mask in organic electrolyte, Electrochem. Solid-State Lett., 2011, vol. 14, no. 8, pp. D84–D88.CrossRefGoogle Scholar
  8. 8.
    Volkov, P.V., Zelentsov, S.V., Korolev, S.A., Luk’yanov, A.Yu., Okhapkin, A.I., and Tropanova, A.N., Investigation into the processes of plasmachemical etching of a photoresist with the help of in situ optical monitoring, Russ. Microelectron., 2017, vol. 46, no. 1, pp. 39–44.CrossRefGoogle Scholar
  9. 9.
    Driesen, M., Wouters, K., and Puers, R., Etch rate optimization in reactive ion etching of epoxy photoresists, Proc. Chem., 2009, no. 1, pp. 796–799.Google Scholar
  10. 10.
    Swaminathan, K., Janardhanan, P.E., and Sulima, O.V., Inductively coupled plasma etching of iii-v antimonides in BCl3/SiCl4 etch chemistry, Thin Solid Films, 2008, no. 516, pp. 8712–8716.Google Scholar
  11. 11.
    Shcherbakov, A.I., Skvortsova, I.B., Zolotarevskii, V.I., Chernova, G.P., and Mashchenko, V.E., Formation of nanoporous oxide at aluminum anodizing, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 1, pp. 67–70.CrossRefGoogle Scholar
  12. 12.
    Yundin, A.S., Ways to remove heat from electronic components of printed circuit boards, in Fundamental’nye i prikladnye nauchnye issledovaniya: aktual’nye voprosy, dostizheniya i innovatsii sbornik statei pobeditelei V Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Proceedings of the 5th International Conference on Basic and Applied Research: Current Issues, Achievements and Innovations), 2017, pp. 129–136.Google Scholar
  13. 13.
    Parshin, V. and Shmakov, M., Production school GPIS. Photolithography. The third stage is the transfer of the pattern to the material of an integrated microcircuit, Tekhnol. Elektron. Prom-sti, 2007, no. 5, pp. 72–77.Google Scholar
  14. 14.
    Trifonova, V.B., Kondrat’eva, E.S., Gubin, A.F., and Kolesnikov, V.A., Determination of optimal conditions electrodeposited copper from stripped sulphuric acid solution during PCB manufacture, Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 3 (172), pp. 26–27.Google Scholar
  15. 15.
    Seidman, L.A., Formation of three-dimensional structures in silicon carbide substrates by plasmochemistry etching, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2015, vol. 18, no. 3 (71), pp. 157–171.Google Scholar
  16. 16.
    Kim, B.J. and Meng, E., Review of polymer MEMS micromachining, J. Micromech. Microeng., 2015, vol. 26, no. 1, p. 013001.CrossRefGoogle Scholar
  17. 17.
    Driesen, M., Wouters, K., and Puers, R., Etch rate optimization in reactive ion etching of epoxy photoresists, in Procedings of Chemistry Eurosensors 23rd Conference, Lausanne, 2009, pp. 796–799.Google Scholar
  18. 18.
    Le, Z.C., Dreeskornfeld, L., Rahn, S., Segler, R., Kleineberg, U., and Heinzmann, U., Application of reactive ion etching to the fabrication of microstructure on Mo/Si multilayer, Chin. Phys. Lett., 1999, vol. 16, no. 9, pp. 665–666.CrossRefGoogle Scholar
  19. 19.
    Balachova, O.V., Alves, M.A.R., Swart, J.W., Braga, E.S., and Cescato, L., CF4 plasma etching of materials used in microelectronics manufacturing, Microelectron. J., 2000, vol. 31, no. 3, pp. 213–215.CrossRefGoogle Scholar
  20. 20.
    Selvam, P. and Nanjundan, S., Synthesis and characterization of new photoresponsive acrylamide polymers having pendant chalcone moieties, React. Funct. Polym., 2005, vol. 62, no. 2, pp. 179–193.CrossRefGoogle Scholar
  21. 21.
    Shmuilovich, K.S., Orlova, N.A., and Shelkovnikov, V.V., Synthesis of polyfluorochalcone acryloyl derivatives, Russ. Chem. Bull., 2011, vol. 60, no. 8, p. 1778.CrossRefGoogle Scholar
  22. 22.
    Borodina, E.A., Orlova, N.A., and Shelkovnikov, V.V., Synthesis of (N-acryloyl)piperazine-substituted polyfluorochalcones, Russ. Chem. Bull., 2013, vol. 62, no. 10, p. 2227.CrossRefGoogle Scholar
  23. 23.
    Borodina, E.A., Interaction of polyfluorinated chalcones with diamines and guanidine, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: 2005.Google Scholar
  24. 24.
    Soboleva, E.A., Orlova, N.A., and Shelkovnikov, V.V., Synthesis of 1-[4-(1,3-diaryl-4,5-dihydro-1H-pyrazol-5-yl)-2,3,5,6-tetrafluorophenyl]piperidin-4-ols and their acrylates, Russ. J. Org. Chem., 2017, vol. 53, no. 3, pp. 398–406.CrossRefGoogle Scholar
  25. 25.
    Dodonov, V.A., Galkin, R.V., Starostina, T.I., Kuropatov, V.A., and Malysheva, Yu.B., Azobis(isobutyronitrile)-tri-n-butylborane radical-producing system in methyl methacrylate polymerization, Dokl. Chem., 2015, vol. 463, no. 1, p. 174–177.CrossRefGoogle Scholar
  26. 26.
    D’yachkov, I.A., Efimov, A.L., and D’yachkov, A.I., Features of the kinetics of polymerization of MMA in the presence of initiators of different structures, Plast. Massy, 2009, no. 9, pp. 27–30.Google Scholar
  27. 27.
    Microchemicals GmbH. micro/az_4500_series.pdf.Google Scholar
  28. 28.
    Hong, G., Holmes, A.S., and Heaton, M.E., Su-8 resist plasma etching and its optimization, in Proceedings of the DTIP, La Napoule, France, May 5–7, 2003, pp. 268–271.Google Scholar
  29. 29.
    Microchem Corp., 2018. SU-8%203000%20Data%20Sheet.pdf.Google Scholar
  30. 30.
    Korol’kov, V.P., Kachkin, A.E., and Shimanskii, R.V., Modernization of microinterferometers MII-4 and MII-4M, Mir Izmer., 2012, no. 10, pp. 37–41.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Derevyashkin
    • 1
    • 2
    Email author
  • E. A. Soboleva
    • 1
  • V. V. Shelkovnikov
    • 1
    • 4
  • A. I. Malyshev
    • 3
  • V. P. Korolkov
    • 3
  1. 1.Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, NovosibirskRussia
  2. 2.Institute of Laser Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Institute of Automation and Electrometry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations