Advertisement

Russian Microelectronics

, Volume 47, Issue 8, pp 608–612 | Cite as

Formation of Charge Pumps in the Structure of Photoelectric Converters

  • V. V. StarkovEmail author
  • V. A. Gusev
  • N. O. Kulakovskaya
  • E. A. GostevaEmail author
  • Yu. N. Parkhomenko
Article
  • 18 Downloads

Abstract

The results of the further development of the original charge-pumping concept in the structure of photoelectric converters are considered. Charge pumps arise due to the formation of spatial defect-impurity complexes. The formation of charge pumps leads to a change in the transport mechanism of photo-induced carriers through the solar cell base. The technological process of nonthermal, or cold photonic annealing is proposed for the first time. This process involves the use of standard equipment for photonic annealing. The effect of nonthermal photonic annealing is achieved using the original photo-mask (removable photo-template). The photo-template provides an annealing mode using several light sources and thermal insulation of the processed wafer. The process is called local photonic annealing. Due to its efficiency and simplicity the process does not require significant industrial investments. The results of experimental studies to increase the short-circuit current and maximum power of solar cells using local photon annealing are presented. The experiments are carried out with solar cells fabricated by various manufacturers.

Keywords:

photoelectric converters charge pumps solar cells local photonic processing 

Notes

REFERENCES

  1. 1.
    Gusev, V.A., Photoelectric converters based on charge pumps, Vestn. SevNTU, Ser. Inform., Elektron., Svyaz’, 2011, no. 114, pp. 199–203.Google Scholar
  2. 2.
    Gusev, V.A., Starkov, V.V., and Teterskii, A.V., Solar cells with a charge pump: theoretical prospects and technological aspects of the application, Russ. Microelectron., 2015, vol. 44, no. 8, pp. 569–574. doi 10.1134/S10637397150800065CrossRefGoogle Scholar
  3. 3.
    Gusev, V.A. and Starkov, V.V., Solar cells with charge swap, in Tr. XII mezhdunar. nauchnoprakt. konf. “Fundamental’nye i prikladnye issledovaniya, razrabotka i primenenie vysokikh tekhnologii v promyshlennosti” (Proceedings of the 12th International Conferencce on Fundamental and Applied Studies, Development and Applicaton of Higher Technologies in Industry), St. Petersburg, 2011, vol. 2, pp. 157–158.Google Scholar
  4. 4.
    Gusev, V.A., Starkov, V.V., and Teterskii, A.V., Solar cells with the charge pumping: theoretical perspectives and technological aspects of the application, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2013, no. 2, pp. 49–54.Google Scholar
  5. 5.
    Gusev, V.A. and Murzin, D.G., Volumetric division layer in the structure of high-voltage semiconductor devices, Vestn. SevNTU, Ser. Inform., Elektron., Svyaz’, 2007, no. 82, pp. 85–89.Google Scholar
  6. 6.
    Heruth, A., Schubert, G., Kaes, M., and Hahn, G., Avoiding boron-oxygen related degradation in highly boron doped Cz silicon, in Proceedings of the 21st EU PVSEC, 2006, pp. 530–537.Google Scholar
  7. 7.
    Breitenstein, O., Langenkamp, M., and Rakoto-niaina, J.P., EBIC investigation of a 3-dimensional network of inversion channels in solar cell on silicon ribbons, Solid State Phenom., 2001, vols. 78–79, pp. 29–38. doi 10.4028/www.scientific.net/SSP.78-79.29Google Scholar
  8. 8.
    Buzynin, A.N., Non-equilibrium impurity redistribution in Si, Nucl. Instrum. Methods Phys. Res., 2002, vol. 188, pp. 366–370. doi 10.1016/S0168-583X(01)00882-5CrossRefGoogle Scholar
  9. 9.
    Buonassisi, T., Vyvenko, O.F., Istratov, A.A., Weber, E.R., Hahn, G., Sontag, D., Rakotoniaina, J.P., Breitenstein, O., Isenberg, J., and Schindler, R., Observation of transition metals at shunt locations in multicrystalline silicon solar cells, J. Appl. Phys., 2004, vol. 95, no. 36, pp. 1556–1558. doi 10.1063/1.1636252CrossRefGoogle Scholar
  10. 10.
    Gosteva, E.A., Gusev, V.A., Starkov, V.V., and Gerasimenko, N.N., Defect-impurity engineering in the formation of the structure of solar cells with charge pumps, in Materialy I Vserossiiskoi nauchnoi konferentsii “Nanostrukturirovannye materialy i preobrazovatel’nye ustroistva dlya solnechnyh elementov 3go pokoleniya (Proceedings of the 1st All-Russia Conference on Nanostructured Materials and Converters for 3rd Generation Solar Elements), Cheboksary, 2013, no. 1, pp. 63–65.Google Scholar
  11. 11.
    Gosteva, E.A., Optimized instrument structure of a photoconverter based on charge pumps, formed by methods of defect-impurity engineering, in Tr. 69th Dni nauki studentov NITU MISiS (Proceedings of the 69th Science Days of NITU MISiS Students), M., 2014, pp. 601–602. http://sciencedays.misis.ru/69_DNI_all.pdf.Google Scholar
  12. 12.
    Kravchenko, V.A., Starkov, V.V., Abrosimov, N.V., and Abrosimova, V.N., Diffusion alloying of silicon by boron and phosphorous in conditions of fast thermal annealing, Elektron. Tekh., Ser. Mater., 1989, no. 4, pp. 20–23.Google Scholar
  13. 13.
    Neishman, V.B., Puzenko, E.A., Kabaldin, A.N., Kraichinskii, A.N., and Krasko, N.N., On the nature of embryos for the formation of thermodonors in silicon, Semiconductors, 1999, vol. 33, no. 12, pp. 1279–1283.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology Problems, Russian Academy of SciencesChernogolovkaRussia
  2. 2.National Research Technological University MISiSMoscowRussia

Personalised recommendations