Russian Microelectronics

, Volume 47, Issue 7, pp 472–478 | Cite as

Analyzing the Influence of Temperature on the Electrophysical Characteristics of a Complementary Pair of Vertical Bipolar Transistors

  • M. O. HrapovEmail author
  • A. V. Gluhov
  • V. A. Gridchin
  • S. V. Kalinin


The influence of temperature on the most important electrical parameters of a complementary bipolar pair of vertical transistors is numerically investigated in the thermodynamic and drift-diffusion models. The advantage of the thermodynamic model in analyzing high-power transistors due to the fact that this model takes into account the self-heating effect is demonstrated;. The simulation results are compared with the experimental characteristics of the test structures. The comparison shows that, for the current amplification factor β and the Early voltage VA, the computational error is less than 15%; for the critical parameter, the collector–emitter breakdown voltage VCE0, it is less than 2%, which is sufficient to use the thermodynamic model for practical purposes.


complementary vertical n–p–n and p–n–p transistors TCAD Sentaurus thermodynamic model collector–emitter breakdown voltage Early voltage and current amplification factor 



  1. 1.
    Savchenko, E.M., High-speed operational amplifiers with current feedback and high level of dynamic accuracy, Extended Abstract of Cand. Sci. (Tech. Sci.) Dissertation, Moscow: 2011.Google Scholar
  2. 2.
    Gray, P.R., Hurst, P.J., Lewis, S.H., and Meyer, R.G., Analysis and Design of Analog Integrated Circuits, 5nd ed., New York: Wiley, 2009.Google Scholar
  3. 3.
    Monticelli, D.M., The future of complementary bipolar, in Proceedings of the IEEE Conference on Bipolar/BiCMOS Circuits and Technology, 2004, pp. 21–25.Google Scholar
  4. 4.
    Bubennikov, A.N. and Bubennikov, A.A., Trends in the development of competitive silicon CMOS-bipolar and BiKMOP-VLSI, Zarubezh. Radioelektron., 1994, nos. 2/3, pp. 7–33.Google Scholar
  5. 5.
    Babcock, J.A., Choi, L.J., Sadovnikov, A., et al., Temperature interaction of Early voltage, current gain and breakdown characteristics of npn and pnp SiGe HBTs on SOI, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Austin, TX, USA, 2010, New York: IEEE, 2010, pp. 145–148.Google Scholar
  6. 6.
    Babcock, J.A., Choi, L.J., Sadovnikov, A., et al., Forward and inverse mode Early voltage dependence on current and temperature for advanced SiGe-pnp on SOI, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2011, pp. 9–12.Google Scholar
  7. 7.
    Bashir, R., Hebert, F., and de Santis, J., A complementary bipolar technology family with a vertically integrated pnp for high-frequency analog applications, IEEE Trans. Electron. Dev., 2001, vol. 48, no. 11, pp. 2525–2534.CrossRefGoogle Scholar
  8. 8.
    Drozdov, D.G., Savchenko, E.M., and Zubkov, A.M., Results of instrument-technological modeling of complementary bipolar technology with a cut-off frequency of 10 GHz and more, in Tr. Konf. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem – 2010 (Proceedings of the Conference on Problems of Perspective Micro- and Nanoelectronic System Design), Stempkovskii, A.L., Ed., Moscow: IPPM RAN, 2010, pp. 66–69.Google Scholar
  9. 9.
    Pffäfli, P., Tikhomirov, P., Xu, X., et al., TCAD for reliability, Microelectron. Reliab., 2012, vol. 52, pp. 1761–1768.CrossRefGoogle Scholar
  10. 10.
    TCAD Sentaurus. Synopsys. Tools/TCAD. Accessed June 1, 2016.Google Scholar
  11. 11.
    Petrosyants, K.O. and Torgovnikov, R.A., Effect of gap dielectric insulation on the thermal regime of the SiGe heterojunction bipolar transistor, Izv. Vyssh. Uchebn. Zaved., Elektron., 2011, no. 5 (91), pp. 106–108.Google Scholar
  12. 12. Accessed June 1, 2016.Google Scholar
  13. 13.
    Sentaurus Device User Guide G-2012.06Google Scholar
  14. 14.
    Vasileska, D. and Goodnik, S., Computational electronics, Mater. Sci. Eng. R, 2002, vol. 38, pp. 181–236.CrossRefGoogle Scholar
  15. 15.
    Selberherr, S., Analysis and Simulation of Semiconductor Devices, Wien: Springer, 1984.CrossRefGoogle Scholar
  16. 16.
    Bank, R.E., Rose, D.J., and Fichtner, W., Numerical methods for semiconductor device simulation, IEEE Trans. Electron Dev., 1983, vol. 30, no. 9, pp. 1031–1041.CrossRefzbMATHGoogle Scholar
  17. 17.
    Khrapov, M.O., Gridchin, V.A., and Kalinin, S.V., Analysis and simulation of silicon vertical complementary bipolar transistors, Izv. Vyssh. Uchebn. Zaved., Elektron., 2016, vol. 21, no. 5, pp. 413–420.Google Scholar
  18. 18.
    Green, M.A., Intrinsic concentration, effective densities of states, and effective mass in silicon, J. Appl. Phys., 1990, vol. 67, no. 6, pp. 2944–2954.CrossRefGoogle Scholar
  19. 19.
    Arora, N.D., Hauser, J.R., and Roulston, D.J., Electron and hole motilities in silicon as a function of concentration and temperature, IEEE Trans. Electron Dev., 1982, vol. 29, no. 2, pp. 292–295.CrossRefGoogle Scholar
  20. 20.
    Canali, C., Majni, G., and Minder, R., Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature, IEEE Trans. Electron Dev., 1975, vol. 22, no. 11, pp. 1045–1047.CrossRefGoogle Scholar
  21. 21.
    Tyagi, M.S. and Van Overstraeten, R., Minority carrier recombination in heavily-doped silicon, Solid-State Electron., 1983, vol. 26, np. 6, pp. 577–597.Google Scholar
  22. 22.
    Okuto, Y. and Crowell, C.R., Threshold energy effect on avalanche breakdown voltage in semiconductor junctions, Solid-State Electron., 1975, vol. 18, no. 2, pp. 161–168.CrossRefGoogle Scholar
  23. 23.
    Van Overstraeten, R. and de Man, H., Measurement of the ionization rates in diffused silicon p-n junctions, Solid-State Electron., 1970, vol. 13, no. 1, pp. 583–608.CrossRefGoogle Scholar
  24. 24. Accessed June 1, 2016.Google Scholar
  25. 25. Accessed June 1, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. O. Hrapov
    • 1
    Email author
  • A. V. Gluhov
    • 2
  • V. A. Gridchin
    • 1
  • S. V. Kalinin
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Siberian State University of Informatics and TelecommunicationsNovosibirskRussia

Personalised recommendations