Advertisement

Russian Microelectronics

, Volume 47, Issue 6, pp 415–426 | Cite as

Modeling the Dynamics of the Integral Dielectric Permittivity of a Porous Low-K Organosilicate Film during the Dry Etching of a Photoresist in O2 Plasma

  • A. A. RezvanovEmail author
  • I. V. Matyushkin
  • O. P. Gushchin
  • E. S. Gornev
Article
  • 4 Downloads

Abstract

Using an imitational cellular-automaton model, the structural degradation of a interlayer low-K dielectric during the plasma etching etching of a photoresist is studied. The dielectric represents a porous material based on SiOCH, whose integral dielectric permittivity depends on the percentage of carbon atoms on the pore walls and in the dielectric matrix. The period of etching is such that the removal of carbon (and, accordingly, degradation) is incomplete. The simulation is performed for 2 million steps of the automaton, which correspond to 2 s in the real process. During this period, the number of methyl groups does not exceed 20% of the initial value at the dielectric pore depth of 40 nm; in this case, the permittivity ε increases from 2.5 to 2.84. Extrapolating to a longer time period (nearly 1 min) shows that the total fraction of СН3-groups is 9% of the initial value through the full depth of the material, while the final value of dielectric permittivity would correspond to 3.0–3.1. The results of the modeling agree with the experimental data described in the literature.

Notes

REFERENCES

  1. 1.
    Volksen, W., Miller, R.D., and Dubois, G., Low dielectric constant materials, Chem. Rev., 2010, vol. 110, no. 1, p. 56.CrossRefGoogle Scholar
  2. 2.
    Valeev, A.S., Krasnikov, G.Ya., Gvozdev, V.A., and Kuznetsov, P.I., The method of manufacturing multilevel copper metallization with an ultra-low value of the dielectric constant of intra-level insulation, RF Patent No. 2548523, 2013.Google Scholar
  3. 3.
    Atkins, P. and de Paula, J., Atkins Physical Chemistry, Oxford: Oxford Univ. Press, 2010, pp. 622–629.Google Scholar
  4. 4.
    Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., and Yanovitskaya, Z.S., Low dielectric constant materials for microelectronics, J. Appl. Phys., 2003, vol. 93, no. 11, p. 8793.CrossRefGoogle Scholar
  5. 5.
    Braginsky, O.V., Kovalev, A.S., Lopaev, D.V., Malykhin, E.M., Mankelevich, Yu.A., Rakhimova, T.V., Rakhimov, A.T., Vasilieva, A.N., Zyryanov, S.M., and Baklanov, M.R., J. Appl. Phys., 2010, vol. 108, p. 073303.CrossRefGoogle Scholar
  6. 6.
    Vanag, V.K., Study of spatially extended dynamical systems using probabilistic cellular automata, Phys. Usp., 1999, vol. 42, no. 5, pp. 413–434.CrossRefGoogle Scholar
  7. 7.
    Matyushkin, I.V. and Khamukhin, A.V., Izv. Vyssh. Uchebn. Zaved., Elektron., 2010, vol. 6, no. 86, p. 394.Google Scholar
  8. 8.
    Matyushkin, I.V., Korobov, S.V., and Vil’danov, R.R., Tr. MFTI, 2014, vol. 6, no. 1, pp. 72–80.Google Scholar
  9. 9.
    Darnon, M., Chevolleau, T., David, T., Posseme, N., Ducote, J., Licitra, C., Vallier, L., Joubert, O., and Torres, J., J. Vac. Sci. Technol., B, 2008, vol. 26, no. 6, pp. 1964–1970.CrossRefGoogle Scholar
  10. 10.
    Burkey, D.D. and Gleason, K.K., Structure and mechanical properties of thin films deposited from 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane and water, J. Appl. Phys., 2003, vol. 93, p. 5143.CrossRefGoogle Scholar
  11. 11.
    Lionti, K., Volksen, W., Magbitang, T., Darnon, M., and Dubois, G., Toward successful integration of porous low-K materials: strategy addressing plasma damage, ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 1, pp. 3071–3083.CrossRefGoogle Scholar
  12. 12.
    Ross, A.D., Chemical vapor deposition of organosilicone composite thin films for porous low-K dielectrics, PhD Dissertation, Boston: MIT, 2005.Google Scholar
  13. 13.
    Palov, A., Rakhimova, T.V., Krishtab, M.B., and Baklanov, M.R., Dependence of dielectric constant of SiOCH low-K films on porosity and pore size, J. Vac. Sci. Technol., B, 2015, vol. 33, p. 020603.CrossRefGoogle Scholar
  14. 14.
    Do, D.D., Adsorption Analysis: Equilibria and Kinetics, London: Imperial College Press, 1999, p. 916.Google Scholar
  15. 15.
    Shoeb, J., Wang, M., and Kushner, M., Damage by radicals and photons during plasma cleaning of porous low-K SiOCH in Ar/O2 and He/H2 plasmas, J. Vac. Sci. Technol., A, 2012, vol. 30, p. 041303.CrossRefGoogle Scholar
  16. 16.
    Galperin, V.A., Danilkin, E.V., and Mochalov, A.I., Protsessy plazmennogo travleniya v mikro- i nanotekhnologiyakh (uchebnoe posobie) (Processes of Plasma Etching in Micro- and Nanotechnology, The School-Book), Moscow: BINOM, 2010, p. 283.Google Scholar
  17. 17.
    Aleksandrov, O.V. and Dusj, A.I., Semiconductors, 2008, vol. 42, no. 11, p. 1370.CrossRefGoogle Scholar
  18. 18.
    Dan’ko, V.A., Indutny, I.Z., Lysenko, V.S., Maidanchuk, I.Yu., Min’ko, V.I., Nazarov, A.N., Tkachenko, A.S., and Shepelyavy, P.E., Semiconductors, 2005, vol. 39, no. 10, pp. 1197–1203.CrossRefGoogle Scholar
  19. 19.
    Kajihara, K., Hirano, M., Uramoto, M., Morimoto, Y., Skuja, L., and Hosono, H., Interstitial oxygen molecules in amorphous SiO2. I. Quantitative concentration analysis by thermal desorption, infrared photoluminescence, and vacuum-ultraviolet optical absorption, J. Appl. Phys., 2005, vol. 98, no. 1, p. 013527.CrossRefGoogle Scholar
  20. 20.
    Rezvanov, A.A., Matyushkin, I.V., and Gushchin, O.P., Elektron. Tekh., Ser. 3: Mikroelektron., 2016, vol. 2, no. 163, p. 63.Google Scholar
  21. 21.
    Rezvanov, A., Matyushkin, I.V., Gutshin, O.P., and Gornev, E.S., Proc. of SPIE, 2016, vol. 10224, p. 102241X.CrossRefGoogle Scholar
  22. 22.
    Kholmurodov, Kh.T., Altaiskii, M.V., Puzynin, I.V., Darden, T., and Filatov, F.P., Methods of molecular dynamics for simulation of physical and biological processes, Phys. Part. Nucl., 2003, vol. 34, no. 2, p. 244.Google Scholar
  23. 23.
    Lide, D.R., CRS Handbook of Chemistry and Physics, 87th ed., Boca Raton, FL: CRC, 2007, p. 77.Google Scholar
  24. 24.
    Liu, J., Kim, W., Bao, J., Shi, H., Baek, W., and Ho, P.S., Restoration and pore sealing of plasma damaged porous organosilicate low-K, J. Vac. Sci. Technol. B, 2007, vol. 25, no. 3, p. 906.CrossRefGoogle Scholar
  25. 25.
    Bao, J., Shi, H., Liu, J., Huang, H., Ho, P.S., Goodner, M.D., Moinpour, M., and Kloster, G.M., Mechanistic study of plasma damage of low-K dielectric surfaces, J. Vac. Sci. Technol., B, 2008, vol. 26, no. 1, p. 219.CrossRefGoogle Scholar
  26. 26.
    Gorman, B.P., Orozco-Teran, R.A., Zhang, Z., Matz, P.D., Mueller, D.W., and Reidy, R.F., Rapid repair of plasma ash damage in low-K dielectrics using supercritical CO2, J. Vac. Sci. Technol., B, 2004, vol. 22, no. 3, pp. 1210–1212.CrossRefGoogle Scholar
  27. 27.
    Shi, H., Dielectric recoveries on O2 plasma damaged organosilicate low-K dielectrics, Academia, 2016. www.academia.edu/18566510/Dielectric_Recoveries_ on_O2_Plasma_Damaged_Organosilicate_Low-k_ Dielectrics.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Rezvanov
    • 1
    • 2
    Email author
  • I. V. Matyushkin
    • 2
    • 3
  • O. P. Gushchin
    • 2
  • E. S. Gornev
    • 1
    • 2
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  2. 2.Molecular Electronics Research InstituteMoscow, ZelenogradRussia
  3. 3.Moscow Institute of Electronic TechnologyMoscow, ZelenogradRussia

Personalised recommendations