Russian Microelectronics

, Volume 47, Issue 6, pp 388–392 | Cite as

Investigation of Alloyed Ohmic Contacts in Epitaxial Tellurium-Doped Gallium Arsenide Layers

  • V. I. Egorkin
  • V. E. Zemlyakov
  • A. V. NezhentsevEmail author
  • V. I. Garmash
  • N. A. Kalyuzhnyi
  • S. A. Mintairov


The conditions for the growth of epitaxial layers are considered and the resistance of alloyed ohmic contacts to tellurium-doped gallium arsenide layers is studied. The use of the (AuGe eutectic alloy)-Ni–Au composition alloy of ohmic contacts to the gallium arsenide layers with electron conductivity, including use as a contact layer of a narrow-band (In0.5Ga0.5As), makes it possible to achieve a resistance of 10–7 Ohm cm2, in the best case; however, this leads to a deterioration of the surface morphology. In this paper, we study the issues of doping the GaAs contact layer by tellurium to the maximum concentration of 2.5 × 1019 cm–3. In this case, the resistance of the ohmic contacts proves to be less than 5 × 10–8 Оhm cm2, simultaneously with the improvement of the semiconductor’s surface morphology.



The work was supported by the Ministry of Science and Education of Russia (agreement no. 14.578.21.0212, unique identifier RFMEFI57816X0212).


  1. 1.
    Daniltsev, V.M., Demidov, E.V., Drozdov, M.N., Drozdov, Yu.N., Kraev, S.A., Surovegina, E.A., Shashkin, V.I., and Yunin, P.A., Heavily doped GaAs:Te layers grown by MOVPE using diisopropyl telluride as a source, Semiconductors, 2016, vol. 50, no. 11, pp. 1439–1442.CrossRefGoogle Scholar
  2. 2.
    Shen, L. et al., Ohmic contacts with ultra-low optical loss on heavily doped n-type InGaAs and InGaAsP for InP-based photonic membranes, IEEE Photon. J., 2016, vol. 8, no. 1, pp. 1–10.Google Scholar
  3. 3.
    Yermolayev, D.M. et al., Terahertz detection in a slit-grating-gate field-effect-transistor structure, Solid-State Electron., 2013, vol. 86, pp. 64–67.CrossRefGoogle Scholar
  4. 4.
    Catalano, A.P. et al., Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAs HBTs, in Proceedings of the Compound Semiconductor Integrated Circuit Symposium CSICS, 2017, IEEE, 2017, pp. 1–4.Google Scholar
  5. 5.
    Koop, E.J. et al., On the annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlxGa1 – xAs heterostructures, Semicond. Sci. Technol., 2013, vol. 28, no. 2, pp. 1–9.CrossRefGoogle Scholar
  6. 6.
    Huo, P., Galiana, B., and Rey-Stolle, I., Comparison of Ti/Pd/Ag, Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-type GaAs for electronic devices handling high current densities, Semicond. Sci. Technol., 2017, vol. 32, no. 4, pp. 1–9.CrossRefGoogle Scholar
  7. 7.
    Woodall, J.M., Braslau, N., and Freeouf, J.L., Contacts to GaAs devices, Phys. Thin Film, 2016, vol. 13, no. 13, p. 199.CrossRefGoogle Scholar
  8. 8.
    Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed., San Diego: Academic, 1999, p. 401.Google Scholar
  9. 9.
    Houng Yu-Min and Low, T.S., Te doping of GaAs and AlxGa1 – xAs using diethyltellurium in low pressure OMVPE, J. Cryst. Growth, 2002, vol. 77, no. 3, pp. 272–280.Google Scholar
  10. 10.
    Lewis, C.R., Ludowise, M.J., and Dietze, W.T., H2Se “memory effects” upon doping profiles in gaas grown by metalorganic chemical vapor deposition (Mo-CVD), J. Electron. Mater., 1984, vol. 13, no. 3, pp. 447–461.CrossRefGoogle Scholar
  11. 11.
    Egorkin, V.I., Zemlyakov, V.E., Nezhentsev, A.V., and Garmash, V.I., Optimization of ohmic contacts to n‑GaAs layers of heterobipolar nanoheterostructures, Russ. Microelectron., 2017, vol. 46, no. 4, pp. 272–276.CrossRefGoogle Scholar
  12. 12.
    Berger, H.H., Models for contacts to planar devices, Solid-State Electron., 1972, vol. 15, pp. 145–158.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Egorkin
    • 1
  • V. E. Zemlyakov
    • 1
  • A. V. Nezhentsev
    • 1
    Email author
  • V. I. Garmash
    • 1
  • N. A. Kalyuzhnyi
    • 2
  • S. A. Mintairov
    • 2
  1. 1.Moscow Institute of Electronic TechnologyMoscowRussia
  2. 2.Ioffe Physical Technical InstituteSt. PetersburgRussia

Personalised recommendations