Russian Microelectronics

, Volume 47, Issue 6, pp 371–380 | Cite as

Parameters of Plasma and Kinetics of Active Particles in CF4 (CHF3) + Ar Mixtures of a Variable Initial Composition

  • A. M. EfremovEmail author
  • D. B. Murin
  • K.-H. Kwon


The electrophysical parameters of plasma and the kinetics of active particles in CF4 + Ar and CHF3 + Ar mixtures under induction RF (13.56 MHz) discharge are compared. It is shown that the CHF3 + Ar system containing 0–75% Ar is intrinsic for systematically lower concentrations and flow densities of fluorine atoms, while they are higher in the case of fluorocarbon radicals and positive ions. The set of formal parameters in the form of flux density ratios is suggested in order to describe the formation and destruction of a fluorocarbon polymer film. It is confirmed that the advantage of the CHF3 + Ar system according to the etching selectivity of SiO2/Si is caused by its higher polymerization ability.



The work was supported by the Russian Foundation for Basic Research (project no. 18-37-00064 mol_а).


  1. 1.
    Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era, Vol. 1: Process Technology, New York: Lattice, 2000.Google Scholar
  2. 2.
    Handbook of Plasma Processing Technology, Rossnagel, S.M., Cuomo, J.J., and Westwood, W.D., Eds., Park Ridge: Noyes, 1990.Google Scholar
  3. 3.
    Roosmalen, A.J., Baggerman, J.A.G., and Brader, S.J.H., Dry Etching for VLSI, New York: Plenum, 1991.CrossRefGoogle Scholar
  4. 4.
    Kimura, T. and Ohe, K., Model and probe measurements of inductively coupled CF4 discharges, J. Appl. Phys., 2002, vol. 92, pp. 1780–1787.CrossRefGoogle Scholar
  5. 5.
    Kimura, T. and Ohe, K., Probe measurements and global model of inductively coupled Ar/CF4 discharges, Plasma Sources Sci. Technol., 1999, vol. 8, pp. 553–560.CrossRefGoogle Scholar
  6. 6.
    Standaert, T.E.F.M., Hedlund, C., Joseph, E.A., and Oehrlein, G.S., Role of fluorocarbon film formation in the etching of silicon, silicondioxide, silicon nitride, and amorphous hydrogenated silicon carbide, J. Vac. Sci. Technol., A, 2004, vol. 22, pp. 53–60.CrossRefGoogle Scholar
  7. 7.
    Lee, H.K., Chung, K.S., and Yu, J.S., Selective etching of thick Si3N4, SiO2 and Si by using CF4/O2 and C2F6 gases with or without O2 or Ar addition, J. Korean Phys. Soc., 2009, vol. 54, pp. 1816–1824.CrossRefGoogle Scholar
  8. 8.
    Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.Google Scholar
  9. 9.
    Yeom, G.Y. and Kushner, M.J., Si/SiO2 etch properties using CF4 and CHF3 in radio frequency cylindrical magnetron discharges, Appl. Phys. Lett., 1990, vol. 56, pp. 857–859.CrossRefGoogle Scholar
  10. 10.
    Gaboriau, F., Cartry, G., Peignon, M.-C., and Cardinaud, Ch., Selective and deep plasma etching of SiO2: comparison between different fluorocarbon gases (CF4, C2F6, CHF3) mixed with CH4 or H2 and influence of the residence time, J. Vac. Sci. Technol., B, 2002, vol. 20, pp. 1514–1521.CrossRefGoogle Scholar
  11. 11.
    Ho, P., Johannes, J.E., and Buss, R.J., Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data, J. Vac. Sci. Technol., A, 2001, vol. 19, pp. 2344–2367.CrossRefGoogle Scholar
  12. 12.
    Bose, D., Rao, M.V.V.S., Govindan, T.R., and Meyyappan, M., Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma, Plasma Sources Sci. Technol., 2003, vol. 12, pp. 225–234.CrossRefGoogle Scholar
  13. 13.
    Proshina, O., Rakhimova, T.V., Zotovich, A., Lopaev, D.V., Zyryanov, S.M., and Rakhimov, A.T., Multifold study of volume plasma chemistry in Ar/CF4 and Ar/CHF3 CCP discharges, Plasma Sources Sci. Technol., 2017, in press. Scholar
  14. 14.
    Chun, L., Efremov, A., Yeom, G.Y., and Kwon, K.-H., A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications, Thin Solid Films, 2015, vol. 579, pp. 136–148.CrossRefGoogle Scholar
  15. 15.
    Son, J., Efremov, A., Yun, S.J., Yeom, G.Y., and Kwon, K.-H., Etching characteristics and mechanism of sinxfilms for nano-devices in CH2F2/O2/Ar inductively coupled plasma: effect of O2 mixing ratio, J. Nanosci. Nanotech., 2014, vol. 14, pp. 9534–9540.CrossRefGoogle Scholar
  16. 16.
    Johnson, E.O. and Malter, L., A floating double probe method for measurements in gas discharges, Phys. Rev., 1950, vol. 80, pp. 58–70.CrossRefGoogle Scholar
  17. 17.
    Sugavara, M., Plasma Etching: Fundamentals and Applications, New York: Oxford Univ. Press, 1998.Google Scholar
  18. 18.
    Kwon, K.-H., Efremov, A., Kim, M., Min, N.K., Jeong, J., and Kim, K., A model-based analysis of plasma parameters and composition in HBr/X (X = Ar, Ge, N2) inductively coupled plasmas, J. Electrochem. Soc., 2010, vol. 157, pp. H574–H579.CrossRefGoogle Scholar
  19. 19.
    Efremov, A., Min, N.K., Choi, B.G., Baek, K.H., and Kwon, K.-H., Model-based analysis of plasma parameters and active species kinetics in Cl2/X (X = Ar, He, N2) inductively coupled plasmas, J. Electrochem. Soc., 2008, vol. 155, pp. D777–D782.CrossRefGoogle Scholar
  20. 20.
    Kokkoris, G., Goodyear, A., Cooke, M., and Gogolides, E., A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 195211.CrossRefGoogle Scholar
  21. 21.
    NIST Chemical Kinetics Database. https://kinetics. Scholar
  22. 22.
    Efremov, A.M., Kim, D.-P., and Kim, C.-I., Effect of gas mixing ratio on gas-phase composition and etch rate in an inductively coupled CF4/Ar plasma, Vacuum, 2004, vol. 75, pp. 133–142.CrossRefGoogle Scholar
  23. 23.
    Lele, C., Liang, Z., Linda, X., Dongxia, L., Hui, C., and Tod, P., Role of CF2 in the etching of SiO2, Si3N4 and Si in fluorocarbon plasma, J. Semicond., 2009, vol. 30, p. 033005-1.CrossRefGoogle Scholar
  24. 24.
    Kay, E., Coburn, J., and Dilks, A., Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization, in Plasma Chemistry III. Topics in Current Chemistry, Eds. by S. Veprek and M. Venugopalan (Springer, Berlin, 1980), vol. 94, pp. 123–145.Google Scholar
  25. 25.
    Kay, E. and Dilks, A., Plasma polymerization of fluorocarbons in rf capacitively coupled diode system, J. Vac. Sci. Technol., 1981, vol. 18, pp. 1–11.CrossRefGoogle Scholar
  26. 26.
    Stoffels, W.W., Stoffels, E., and Tachibana, K., Polymerization of fluorocarbons in reactive ion etching plasmas, J. Vac. Sci. Technol., A, 1998, vol. 16, pp. 87–95.CrossRefGoogle Scholar
  27. 27.
    Gray, D.C., Tepermeister, I. and Sawin, H.H., Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching, J. Vac. Technol., B, 1993, vol. 11, pp. 1243–1257.Google Scholar
  28. 28.
    Efremov, A.M., Kim, D.P., and Kim, C.-I., Simple model for ion-assisted etching using Cl2/Ar inductively coupled plasma: effect of gas mixing ratio, IEEE Trans. Plasma Sci., 2004, vol. 32, pp. 1344–1351.CrossRefGoogle Scholar
  29. 29.
    Jansen, H., Gardeniers, H., de Boer, M., Elwenspoek, M., and Fluitman, J., A survey on the reactive ion etching of silicon in microtechnology, J. Micromech. Microeng., 1996, vol. 6, pp. 14–28.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.Korea UniversitySejongSouth Korea

Personalised recommendations