Russian Microelectronics

, Volume 47, Issue 2, pp 118–130 | Cite as

Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia

  • A. I. Abdulagatov
  • Sh. M. Ramazanov
  • R. S. Dallaev
  • E. K. Murliev
  • D. K. Palchaev
  • M. Kh. Rabadanov
  • I. M. Abdulagatov
Article
  • 20 Downloads

Abstract

Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N2H4) or ammonia (NH3). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH3) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N2H4 and NH3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm3, 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm3, 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N2H4 was lower than for NH3. In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slack, G.A., et al., The intrinsic thermal-conductivity of AlN, J. Phys. Chem. Solids, 1987, vol. 48, no. 7, pp. 641–647.CrossRefGoogle Scholar
  2. 2.
    Goldberg, Y., Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S., New York: Wiley, 2001.Google Scholar
  3. 3.
    Meng, W.J., Properties of Group III Nitrides, No. 11 of EMIS Datareviews Series, London: Edgar J.H., 1994.Google Scholar
  4. 4.
    Aita, C.R., Kubiak, C.J.G., and Shih, F.Y.H., Optical behavior near the fundamental absorption-edge of sputter-deposited microcrystalline aluminum nitride, J. Appl. Phys., 1989, vol. 66, no. 9, pp. 4360–4363.CrossRefGoogle Scholar
  5. 5.
    Edwards, J. et al., Space charge conduction and electrical behaviour of aluminium nitride single crystals, Solid State Commun., 1965, vol. 3, no. 5, pp. 99–100.CrossRefGoogle Scholar
  6. 6.
    Usman, M. et al., Toward the understanding of stacked Al-based high-k dielectrics for passivation of 4H-SiC devices, J. Electrochem. Soc., 2011, vol. 158, no. 1, pp. H75–H79.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bosund, M. et al., GaAs surface passivation by plasmaenhanced atomic-layer-deposited aluminum nitride, Appl. Surf. Sci., 2010, vol. 256, no. 24, pp. 7434–7437.CrossRefGoogle Scholar
  8. 8.
    Kueck, D. et al., AlN as passivation for surface channel FETs on H-terminated diamond, Diamond Relat. Mater., 2010, vol. 19, nos. 7–9, pp. 932–935.CrossRefGoogle Scholar
  9. 9.
    Luc, Q.H. et al., Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density, IEEE Electron Dev. Lett., 2015, vol. 36, no. 12, pp. 1277–1280.CrossRefGoogle Scholar
  10. 10.
    Aissa, K.A. et al., AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications, J. Phys. D: Appl. Phys., 2015, vol. 48, no. 14.Google Scholar
  11. 11.
    Yusoff, M.Z.M. et al., Plasma-assisted MBE growth of AlN/GaN/AlN heterostructures on Si(111) substrate, Superlatt. Microstruct., 2013, vol. 60, pp. 500–507.CrossRefGoogle Scholar
  12. 12.
    Brubaker, M.D. et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, J. Appl. Phys., 2011, vol. 110, no. 5.Google Scholar
  13. 13.
    Hoffman, D.M. et al., Chemical vapor deposition of aluminum and gallium nitride thin films from metalorganic precursors, J. Vacuum Sci. Technol. A, 1996, vol. 14, no. 2, pp. 306–311.CrossRefGoogle Scholar
  14. 14.
    Khan, M.A. et al., Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates, Appl. Phys. Lett., 1992, vol. 61, no. 21, pp. 2539–2541.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Interrante, L.V. et al., Preparation and properties of aluminum nitride films using an organometallic precursor, J. Electrochem. Soc., 1989, vol. 136, no. 2, pp. 472–478.CrossRefGoogle Scholar
  16. 16.
    Gordon, R.G., Riaz, U., and Hoffman, D.M., Chemical vapor-deposition of aluminum nitride thin-films, J. Mater. Res., 1992, vol. 7, no. 7, pp. 1679–1684.CrossRefGoogle Scholar
  17. 17.
    Fathimulla, A. and Lakhani, A.A., Reactively Rf magnetron sputtered ain films as gate dielectric, J. Appl. Phys., 1983, vol. 54, no. 8, pp. 4586–4589.CrossRefGoogle Scholar
  18. 18.
    Mirpuri, C. et al., Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN, J. Appl. Phys., 2007, vol. 101, no. 2.Google Scholar
  19. 19.
    Rosenberger, L. et al., XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surf. Interface Anal., 2008, vol. 40, no. 9, pp. 1254–1261.CrossRefGoogle Scholar
  20. 20.
    Gacevic, Z. et al., Internal quantum efficiency of IIInitride quantum dot superlattices grown by plasmaassisted molecular-beam epitaxy, J. Appl. Phys., 2011, vol. 109, no. 10.Google Scholar
  21. 21.
    George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.CrossRefGoogle Scholar
  22. 22.
    Ruhela, D. et al., Low temperature deposition of AlN films by an alternate supply of trimethyl aluminum and ammonia, Chem. Vapor Deposit., 1996, vol. 2, no. 6, pp. 277–283.CrossRefGoogle Scholar
  23. 23.
    Mayer, T.M., Rogers, J.W., and Michalske, T.A., Mechanism of nucleation and atomic layer growth of AlN on Si, Chem. Mater., 1991, vol. 3, no. 4, pp. 641–646.CrossRefGoogle Scholar
  24. 24.
    Liu, H., Bertolet, D.C., and Rogers, J.W., Reactions of trimethylaluminum and ammonia on alumina at 600-K, surface chemical aspects of AlN thin-film growth, Surf. Sci., 1995, vol. 340, nos. 1–2, pp. 88–100.CrossRefGoogle Scholar
  25. 25.
    Bui, H.V. et al., Self-limiting growth and thickness-and temperature-dependence of optical constants of ALD AlN thin films, ECS J. Solid State Sci. Technol., 2014, vol. 3, no. 4, pp. P101–P106.CrossRefGoogle Scholar
  26. 26.
    Liu, X.Y. et al., Atomic layer deposition of aluminum nitride thin films from trimethyl aluminum (TMA) and ammonia, in Integration of Advanced Micro-and Nanoeletronic Devices—Critical Issues and Solutions, Proceedings of the Symposia, San Francisco, CA, April 13–16, 2004, MRS Symp. Proc., 2004, vol. 811, pp. 11–16.Google Scholar
  27. 27.
    Elers, K.E. et al., Atomic layer epitaxy growth of AlN thin-films, J. Phys. IV, 1995, vol. 5, no. C5, pp. 1021–1027.Google Scholar
  28. 28.
    Jokinen, J. et al., Analysis of AlN thin films by combining TOF-ERDA and NRB techniques, Thin Solid Films, 1996, vol. 289, nos. 1–2, pp. 159–165.CrossRefGoogle Scholar
  29. 29.
    Puurunen, R.L. et al., Successive reactions of gaseous trimethylaluminium and ammonia on porous alumina, Phys. Chem. Chem. Phys., 2001, vol. 3, no. 6, pp. 1093–1102.CrossRefGoogle Scholar
  30. 30.
    Alevli, M., Ozgit, C., and Donmez, I., The influence of growth temperature on the properties of AlN films grown by atomic layer deposition, Acta Phys. Polon. A, 2011, vol. 120, no. 6A, pp. A58–A60.CrossRefGoogle Scholar
  31. 31.
    Lee, Y.J. and Kang, S.W., Growth of aluminum nitride thin films prepared by plasma-enhanced atomic layer deposition, Thin Solid Films, 2004, vol. 446, no. 2, pp. 227–231.CrossRefGoogle Scholar
  32. 32.
    Lee, Y.J., Formation of aluminum nitride thin films as gate dielectrics on Si(100), J. Cryst. Growth, 2004, vol. 266, no. 4, pp. 568–572.CrossRefGoogle Scholar
  33. 33.
    Ozgit, C. et al., Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition, Thin Solid Films, 2012, vol. 520, no. 7, pp. 2750–2755.CrossRefGoogle Scholar
  34. 34.
    Ozgit-Akgun, C. et al., Hollow cathode plasmaassisted atomic layer deposition of crystalline AlN, GaN and AlxGa1–xN thin films at low temperatures, J. Mater. Chem. C, 2014, vol. 2, no. 12, pp. 2123–2136.Google Scholar
  35. 35.
    Alevli, M. et al., Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures, Phys. Status Solidi A, 2012, vol. 209, no. 2, pp. 266–271.CrossRefGoogle Scholar
  36. 36.
    Goerke, S. et al., Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H-2/N-2 plasma, Appl. Surf. Sci., 2015, vol. 338, pp. 35–41.CrossRefGoogle Scholar
  37. 37.
    Alevli, M., et al., The influence of N-2/H-2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition, J. Cryst. Growth, 2011, vol. 335, no. 1, pp. 51–57.CrossRefGoogle Scholar
  38. 38.
    Motamedi, P. and Cadien, K., Structural and optical characterization of low-temperature ALD crystalline AlN, J. Cryst. Growth, 2015, vol. 421, pp. 45–52.CrossRefGoogle Scholar
  39. 39.
    Profijt, H.B. et al., Plasma-assisted atomic layer deposition: basics, opportunities, and challenges, J. Vacuum Sci. Technol. A, 2011, vol. 29, no. 5.Google Scholar
  40. 40.
    Kim, K.H. et al., Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-kappa oxide/tungsten nitride gate stacks, Appl. Phys. Lett., 2007, vol. 90, no. 21.Google Scholar
  41. 41.
    Liu, G. et al., Atomic layer deposition of AlN with tris(dimethylamido)aluminum and NH3, in Proceedings of the 7th Symposium on Atomic Layer Deposition Applications, Boston, MA, Oct. 10–12, 2011, ECS Trans., 2011, vol. 41, no. 2, pp. 219–225.Google Scholar
  42. 42.
    Burton, B.B., Lavoie, A.R., and George, S.M., Tantalum nitride atomic layer deposition using (tert-butylimido) tris(diethylamido) tantalum and hydrazine, J. Electrochem. Soc., 2008, vol. 155, no. 7, pp. D508–D516.CrossRefGoogle Scholar
  43. 43.
    Gaskill, D.K., Bottka, N., and Lin, M.C., OMVPE of GaN and AlN films by metal alkyls and hydrazine, J. Cryst. Growth, 1986, vol. 77, nos. 1–3, pp. 418–423.CrossRefGoogle Scholar
  44. 44.
    Yun, J.Y., Park, M.Y., and Rhee, S.W., Comparison of tetrakis(dimethylamido)titanium and tetrakis(diethylamido) titanium as precursors for metallorganic chemical vapor deposition of titanium nitride, J. Electrochem. Soc., 1999, vol. 146, no. 5, pp. 1804–1808.CrossRefGoogle Scholar
  45. 45.
    Schmidt, E.W., Hydrazine and Its Derivatives, Preparation, Properties, Applications, New York: Wiley, 2001.Google Scholar
  46. 46.
    Elam, J.W., Groner, M.D., and George, S.M., Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987.CrossRefGoogle Scholar
  47. 47.
    Neumayer, D.A. and Ekerdt, J.G., Growth of group III nitrides. A review of precursors and techniques, Chem. Mater., 1996, vol. 8, no. 1, p. 9–25.CrossRefGoogle Scholar
  48. 48.
    Rocklein, M.N. and George, S.M., Temperatureinduced apparent mass changes observed during quartz crystal microbalance measurements of atomic layer deposition, Anal. Chem., 2003, vol. 75, no. 19, pp. 4975–4982.CrossRefGoogle Scholar
  49. 49.
    Takahashi, Y. et al., Low-temperature deposition of a refractory aluminum compound by the thermaldecomposition of aluminum dialkylamides, Surf. Sci., 1979, vol. 86, pp. 238–245.CrossRefGoogle Scholar
  50. 50.
    Holtz, M. et al., Preparation of optoelectronic devices based on AlN/AlGaN superlattices, in Progress in Semiconductors II, Electronic and Optoelectronic Applications, MRS Symp. Proc., 2003, vol. 744, pp. 621–626.Google Scholar
  51. 51.
    Bertolet, D.C., Liu, H., and Rogers, J.W., Mechanistics of early-stage growth of AlN on Alumina. 2. TmAl and NH3, Chem. Mater., 1993, vol. 5, no. 12, pp. 1814–1818.CrossRefGoogle Scholar
  52. 52.
    Buttera, S.C., Mandia, D.J., and Barry, S.T., Tris(dimethylamido) aluminum(III): an overlooked atomic layer deposition precursor, J. Vacuum Sci. Technol. A, 2017, vol. 35, no. 1.Google Scholar
  53. 53.
    Perros, A.P. et al., Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 50.Google Scholar
  54. 54.
    Bosund, M. et al., Properties of AlN grown by plasma enhanced atomic layer deposition, Appl. Surf. Sci., 2011, vol. 257, no. 17, pp. 7827–7830.CrossRefGoogle Scholar
  55. 55.
    Kim, K.H., Kwak, N.W., and Lee, S.H., Fabrication and properties of AlN film on GaN substrate by using remote plasma atomic layer deposition method, Electron. Mater. Lett., 2009, vol. 5, no. 2, pp. 83–86.CrossRefGoogle Scholar
  56. 56.
    Broas, M. et al., Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films, J. Vacuum Sci. Technol. A, 2016, vol. 34, no. 4.Google Scholar
  57. 57.
    The CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., 88th ed., Gaithersburg, MD: Natl. Inst. Standards Technol., 2007, p. 2640.Google Scholar
  58. 58.
    Abdulagatov, A.I. et al., Atomic layer deposition of AlN and AlON with tris(dimethylamido)aluminum, NH3 and H2O, 2017, in preparation.Google Scholar
  59. 59.
    Nepal, N. et al., Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy, Appl. Phys. Lett., 2013, vol. 103, no. 8.Google Scholar
  60. 60.
    Ozgit-Akgun, C., Donmez, I., and Biyikli, N., Plasmaenhanced atomic layer deposition of III-nitride thin films, in Proceedings of the 9th Symposium on Atomic Layer Deposition Applications, ECS Trans., 2013, vol. 58, no. 10, pp. 289–297.CrossRefGoogle Scholar
  61. 61.
    Kelly, R., Attempt to understand preferential sputtering, Nucl. Instrum. Methods Phys. Res., 1978, vol. 149, nos. 1–3, pp. 553–558.CrossRefGoogle Scholar
  62. 62.
    Sigmund, P., Mechanisms and theory of physical sputtering by particle impact, Nucl. Instrum. Methods Phys. Res. B, 1987, vol. 27, no. 1, pp. 1–20.CrossRefGoogle Scholar
  63. 63.
    Liu, H.N., Bertolet, D.C., and Rogers, J.W., The surface-chemistry of aluminum nitride MOCVD on alumina using trimethylaluminum and ammonia as precursors, Surf. Sci., 1994, vol. 320, nos. 1–2, pp. 145–160.CrossRefGoogle Scholar
  64. 64.
    Fonash, S.J., An overview of dry etching damage and contamination effects, J. Electrochem. Soc., 1990, vol. 137, no. 12, pp. 3885–3892.CrossRefGoogle Scholar
  65. 65.
    Soto, C., Boiadjiev, V., and Tysoe, W.T., Spectroscopic study of AlN film formation by the sequential reaction of ammonia and trimethylaluminum on alumina, Chem. Mater., 1996, vol. 8, no. 9, pp. 2359–2365.CrossRefGoogle Scholar
  66. 66.
    Hoffman, D.M., Chemical-vapor-deposition of nitride thin-films, Polyhedron, 1994, vol. 13, no. 8, pp. 1169–1179.CrossRefGoogle Scholar
  67. 67.
    Cho, M.H. et al., Enhancement of the chemical stability of hydrogenated aluminum nitride thin films by nitrogen plasma treatment, Electrochem. Solid State Lett., 2001, vol. 4, no. 2, pp. F7–F9.CrossRefGoogle Scholar
  68. 68.
    Shih, H.Y. et al., Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing, Sci. Rep., 2017, vol. 7, p. 39717.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Abdulagatov
    • 1
  • Sh. M. Ramazanov
    • 1
  • R. S. Dallaev
    • 1
  • E. K. Murliev
    • 1
  • D. K. Palchaev
    • 1
  • M. Kh. Rabadanov
    • 1
  • I. M. Abdulagatov
    • 1
  1. 1.Dagestan State UniversityMakhachkala, The Republic of DagestanRussia

Personalised recommendations