Russian Microelectronics

, Volume 46, Issue 8, pp 557–563 | Cite as

Deformation Anisotropy of Y + 128°-Cut Single Crystalline Bidomain Wafers of Lithium Niobate

  • I. V. KubasovEmail author
  • A. V. Popov
  • A. S. Bykova
  • A. A. Temirov
  • A. M. Kislyuk
  • R. N. Zhukov
  • D. A. Kiselev
  • M. V. Chichkov
  • M. D. Malinkovich
  • Yu. N. Parkhomenko


Bidomain single crystals of lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) are promising materials for use as actuators, mechanoelectrical transducers, and sensors capable of working in a wide temperature range. One need to take into account the anisotropy of the properties of the crystalline material when such devices are designed. In this study we investigated deformations of bidomain round shaped Y + 128°-cut wafers of lithium niobate in an external electric field. The dependences of the piezoelectric coefficients on the rotation angles were calculated for lithium niobate and lithium tantalate and plotted for the crystal cuts which are used for the formation of a bidomain ferroelectric structure. In the experiment, we utilized an external heating method and long-time annealing with the lithium out-diffusion method in order to create round bidomain lithium niobate wafers. Optical microscopy was used to obtain the dependences of the bidomain crystals’ movements on the rotation angle with central fastening and the application of an external electric field. We also modelled the shape of the deformed bidomain wafer with the suggestion that the edge movement depends on the radial distance to the fastening point quadratically. In conclusion, we revealed that the bidomain Y + 128°-cut lithium niobate wafer exhibits a saddle-like deformation when a DC electric field is applied.


lithium niobate lithium tantalate bidomain crystal anisotropy of deformation actuator piezoelectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volk, T.R. and Wohlecke, M., Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, vol. 115 of Springer Series in Materials Science, Berlin, Heidelberg: Springer, 2009. doi 10.1007/978-3-540-70766-0Google Scholar
  2. 2.
    Arizmendi, L., Photonic applications of lithium niobate crystals, Phys. Status Solidi A, 2004, vol. 201, no. 2, pp. 253–283. doi 10.1002/pssa.200303911CrossRefGoogle Scholar
  3. 3.
    Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., and Bossi, D.E., A review of lithium niobate modulators for fiber-optic communications systems, IEEE J. Sel. Top. Quantum Electron., 2000, vol. 6, no. 1, pp. 69–82. doi 10.1109/2944.826874CrossRefGoogle Scholar
  4. 4.
    Gualtieri, J.G., Kosinski, J.A., and Ballato, A., Piezoelectric materials for acoustic wave applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1994, vol. 41, no. 1, pp. 53–59. doi 10.1109/58.265820CrossRefGoogle Scholar
  5. 5.
    Scott, J.F., Ferroelectric Memories, Vol. 3 of Springer Series in Advanced Microelectronics, Berlin, Heidelberg: Springer, 2000. doi 10.1007/978-3-662-04307-3Google Scholar
  6. 6.
    Cross, L.E., Ferroelectric materials for electromechanical transducer applications, Mater. Chem. Phys., 1996, vol. 43, no. 2, pp. 108–115. doi 10.1016/0254-0584(95)01617-4CrossRefGoogle Scholar
  7. 7.
    Lu, Y.L., Lu, Y.Q., Cheng, X.F., Luo, G.P., Xue, C.C., and Ming, N.B., Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice, Appl. Phys. Lett., 1996, vol. 68, no. 19, pp. 2642–2644. doi 10.1063/1.116267CrossRefGoogle Scholar
  8. 8.
    Antipov, V.V., Bykov, A.S., Malinkovich, M.D., and Parkhomenko, Yu.N., Formation of bidomain structure in lithium niobate single crystals by electrothermal method, Ferroelectrics, 2008, vol. 374, no. 1, pp. 65–72. doi 10.1080/00150190802427127CrossRefGoogle Scholar
  9. 9.
    Grilli, S., Ferraro, P., De Nicola, S., Finizio, A., Pierattini, G., de Natale, P., and Chiarini, M., Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography, Opt. Express, 2003, vol. 11, no. 4, pp. 392–405. doi 10.1364/OE.11.000392CrossRefGoogle Scholar
  10. 10.
    Dierolf, V., and Sandmann, C., Direct-write method for domain inversion patterns in LiNbO3, Appl. Phys. Lett., 2004, vol. 84, no. 20, pp. 3987–3989. doi 10.1063/1.1753057CrossRefGoogle Scholar
  11. 11.
    Zhang, X., Dongfeng, X., and Kenji, K., Domain switching and surface fabrication of lithium niobate single crystals, J. Alloys Compd., 2008, vol. 499, nos. 1-2, pp. 219–223. doi 10.1016/j.jallcom.2006.02.091CrossRefGoogle Scholar
  12. 12.
    Nutt, A.C., Gopalan, V., and Gupta, M.C., Domain inversion in LiNbO3 using direct electron—beam writing, Appl. Phys. Lett., 1992, vol. 60, no. 23, pp. 2828–2830. doi 10.1063/1.106837CrossRefGoogle Scholar
  13. 13.
    Miyazawa, S., Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide, J. Appl. Phys., 1979, vol. 50, no. 7, pp. 4599–4603. doi 10.1063/1.326568CrossRefGoogle Scholar
  14. 14.
    Rosenman, G., Kugel, V.D., and Shur, D., Diffusioninduced domain inversion in ferroelectrics, Ferroelectrics, 1995, vol. 172, no. 1, pp. 7–18. doi 10.1080/00150199508018452CrossRefGoogle Scholar
  15. 15.
    Chen, J., Zhou, Q., Hong, J.F., Wang, W.S., Ming, N.B., Feng, D., and Fang, C.G., Influence of growth striations on para-ferroelectric phase transitions: mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3, J. Appl. Phys., 1989, vol. 66, no. 1, pp. 336–341. doi 10.1063/1.343879CrossRefGoogle Scholar
  16. 16.
    Malinkovich, M.D., Bykov, A.S., Kubasov, I.V., Kiselev, D.A., Ksenich, S.V., Zhukov, R.N., Temirov, A.A., Timushkin, N.G., and Parkhomenko, Yu.N., Formation of a bidomain structure in lithium niobate wafers for betavoltaic alternators, Russ. Microelectron., 2016, vol. 45, no. 8, pp. 582–586. doi 10.1134/S1063739716080096CrossRefGoogle Scholar
  17. 17.
    Kugel, V.D. and Rosenman, G., Domain inversion in heat-treated LiNbO3 crystals, Appl. Phys. Lett., 1993, vol. 62, no. 23, pp. 2902–2904. doi 10.1063/1.109191CrossRefGoogle Scholar
  18. 18.
    Kubasov, I.V., Kislyuk, A.M., Bykov, A.S., Malinkovich, M.D., Zhukov, R.N., Kiselev, D.A., Ksenich, S.V., Temirov, A.A., Timushkin, N.G., and Parkhomenko, Yu.N., Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing, Crystallogr. Rep, 2016, vol. 61, no. 2, pp. 258–262. doi 10.7868/S0023476116020120CrossRefGoogle Scholar
  19. 19.
    Bykov, A.S., Grigoryan, S.G., Zhukov, R.N., Kiselev, D.A., Ksenich, S.V., Kubasov, I.V., Malinkovich, M.D., and Parkhomenko, Yu.N., Formation of bidomain structure in lithium niobate plates by the stationary external heating method, Russ. Microelectron., 2014, vol. 43, no. 8, pp. 536–542. doi 10.1134/S1063739714080034CrossRefGoogle Scholar
  20. 20.
    Kubasov, I., Malinkovich, M., Bykov, A., Kiselev, D., Temirov, A., and Ksenich, S., Bimorph single crystalline piezoelectric actuators for scanning probe microscopy, in Proceedings of the 24th International Conference on Materials and Technology, Portoroz, Slovenia, 2016, p. 124.Google Scholar
  21. 21.
    Blagov, A.E., Bykov, A.S., Kubasov, I.V., Malinkovich, M.D., Pisarevskii, Yu.V., Targonskii, A.V., Eliovich, I.A., and Kovalchuk, M.V., An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal, Instrum. Exp. Tech., 2016, vol. 59, no. 5, pp. 728–732. doi 10.1134/S0020441216050043CrossRefGoogle Scholar
  22. 22.
    Kubasov, I., Kislyuk, A., Malinkovich, M., Kiselev, D., Chichkov, M., Ksenich, S., Temirov, A., Bykov, A., and Parkhomenko, Yu., A novel high-temperature vibration sensor based on bidomain lithium niobate crystal, in Proceedings of the 7th International Advances in Applied Physics and Materials Science Congress and Exhibition, Oludeniz, Turkey, 2017, in press.Google Scholar
  23. 23.
    Vidal, J., Turutin, A.V., Kubasov, I.V, Malinkovich, M.D., Parkhomenko, Yu.N., Kobeleva, S.P., Kholkin, A.L., and Sobolev, N.A., Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals, IEEE Trans.Ultrason., Ferroelectr., Freq. Control, 2017, vol. 99, p. 1. doi 10.1109/TUFFC.2017.2694342Google Scholar
  24. 24.
    Kubasov, I.V., Timshina, M.S., Kiselev, D.A., Malinkovich, M.D., Bykov, A.S., and Parkhomenko, Yu.N., Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing, Crystallogr. Rep., 2015, vol. 60, no. 5, pp. 700–705. doi 10.1134/S1063774515040136CrossRefGoogle Scholar
  25. 25.
    Nakamura, K., Ando, H., and Shimizu, H., Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer, Jpn. J. Appl. Phys., 1987, vol. 26, no. S2, pp. 198–200. doi 10.7567/JJAPS.26S2.198CrossRefGoogle Scholar
  26. 26.
    Nakamura, K. and Shimizu, H., Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer, Ferroelectrics, 1989, vol. 93, no. 1, pp. 211–216. doi 10.1080/00150198908017348CrossRefGoogle Scholar
  27. 27.
    Crawley, E.F. and Lazarus, K.B., Induced strain actuation of isotropic and anisotropic plates, AIAA J., 1991, vol. 29, no. 6, pp. 944–951. doi 10.2514/3.10684CrossRefGoogle Scholar
  28. 28.
    Bent, A.A., Hagood, N.W., and Rodgers, J.P., Anisotropic actuation with piezoelectric fiber composites, J. Intell. Mater. Syst. Struct., 1995, vol. 6, no. 3, pp. 338–349. doi 10.1177/1045389X9500600305CrossRefGoogle Scholar
  29. 29.
    Huang, G.L. and Sun, C.T., The dynamic behaviour of a piezoelectric actuator bonded to an anisotropic elastic medium, Int. J. Solids Struct., 2006, vol. 43, no. 5, pp. 1291–1307. doi 10.1016/j.ijsolstr.2005.03.010CrossRefzbMATHGoogle Scholar
  30. 30.
    Warner, A.W., Onoe, M., and Coquin, G.A., Determination of elastic and piezoelectric constants for crystals in class (3m), J. Acoust. Soc. Am., 1967, vol. 42, no. 6, pp. 1223–1231. doi 10.1121/1.1910709CrossRefGoogle Scholar
  31. 31.
    Shur, V.Y., Baturin, I.S., Mingaliev, E.A., Zorikhin, D.V., Udalov, A.R., and Greshnyakov, E.D., Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers, Appl. Phys. Lett., 2015, vol. 106, no. 5, p. 053116. doi 10.1063/1.4907679CrossRefGoogle Scholar
  32. 32.
    Smits, J.G., Dalke, S.I., and Cooney, T.K., The constituent equations of piezoelectric bimorphs, Sens. Actuators A: Phys., 1991, vol. 28, no. 1, pp. 41–61. doi 10.1016/0924-4247(91)80007-CCrossRefGoogle Scholar
  33. 33.
    Nassau, K., Levinstein, H.J., and Loiacono, G.M., The domain structure and etching of ferroelectric lithium niobate, Appl. Phys. Lett., 1965, vol. 6, no. 11, pp. 228–229. doi 10.1063/1.1754147CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Kubasov
    • 1
    Email author
  • A. V. Popov
    • 1
    • 2
  • A. S. Bykova
    • 1
  • A. A. Temirov
    • 1
  • A. M. Kislyuk
    • 1
  • R. N. Zhukov
    • 1
  • D. A. Kiselev
    • 1
  • M. V. Chichkov
    • 1
  • M. D. Malinkovich
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.AO OptronMoscowRussia

Personalised recommendations