Russian Microelectronics

, Volume 46, Issue 8, pp 527–539 | Cite as

Application of Radioactive Isotopes for Beta-Voltaic Generators

  • A. S. BykovEmail author
  • M. D. Malinkovich
  • I. V. Kubasov
  • A. M. Kislyuk
  • D. A. Kiselev
  • S. V. Ksenich
  • R. N. Zhukov
  • A. A. Temirov
  • M. V. Chichkov
  • A. A. Polisan
  • Yu. N. Parkhomenko


The features of using radioactive isotopes when creating off-line power supplies are considered. The analysis of the substances used in radioisotope thermoelectric generators (RTGs) is carried out. The prospects for manufacturing beta-voltaic generators are justified and they are compared with other electric power sources. The mechanism of β-decay and its place among other types of nuclear transformations is considered. The basic requirements for radiation safety and the used materials of the frame and converter are formulated. Some designs of radioisotope beta-voltaic sources proposed earlier are considered. A list of isotopes that can be used as a power source in a beta-voltaic generator is presented. The methods for obtaining the radioactive materials demonstrating β-decay and their basic properties and natural isotopes are considered. It is concluded that the choice of nickel-63 isotope is preferable for use in beta-voltaic generators due to the optimal combination of its half lifetime, average particle energy, and radiation intensity.


power supplies beta-voltaic generators radioactive radiation isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koutitas, G. and Demestichas, P., A review of energy efficiency in telecommunication networks, Telfor J., 2010, vol. 2, no. 1, pp. 2–7. Scholar
  2. 2.
    Bose, B.K., Global energy scenario and impact of power electronics in 21st century, IEEE Trans. Industrial Electron., 2013, vol. 60, no. 7, pp. 2638–2651. doi 10.1109/TIE.2012.2203771CrossRefGoogle Scholar
  3. 3.
    Paradiso, J.A. and Starner, T., Energy scavenging for mobile and wireless electronics, IEEE Pervasive Comput., 2005, vol. 4, no. 1, pp. 18–27. doi 10.1109/MPRV.2005.9CrossRefGoogle Scholar
  4. 4.
    Moseley, H.G.J. and Fellow, J.H., The attainment of high potentials by the use of radium, Proc. R. Soc. London A, 1913, vol. 88, no. 605, pp. 471–476. doi 10.1098/rspa.1913.0045CrossRefGoogle Scholar
  5. 5.
    Singh, N., Radioisotopes, Applications in Physical Sciences, Rijeka, Croatia: InTech, 2011. doi 10.5772/858CrossRefGoogle Scholar
  6. 6.
    Huffman, F.N. and Norman, C., Nuclear-fueled cardiac pacemakers, Chest, 1974, vol. 65, no. 6, pp. 667—672. doi 10.1378/chest.65.6.667CrossRefGoogle Scholar
  7. 7.
    Wei, X. and Liu, J., Power sources and electrical recharging strategies for implantable medical devices, Front. Energy Power Eng. China, 2008, vol. 2, no. 1, pp. 1–13. doi 10.1007/s11708-008-0016-3CrossRefGoogle Scholar
  8. 8.
    Whalen, S.A., Apblett, C.A., and Aselage, T.L., Improving power density and efficiency of miniature radioisotopic thermoelectric generators, J. Power Sources, 2008, vol. 180, no. 1, pp. 657–663. doi 10.1016/j.jpowsour.2008.01.080CrossRefGoogle Scholar
  9. 9.
    Olsen, L.C., Cabauy, P., and Elkind, B.J., Betavoltaic power sources, Phys. Today, 2012, vol. 65, no. 12, pp. 35–38. doi 10.1063/PT.3.1820CrossRefGoogle Scholar
  10. 10.
    Seaborg, G.T., Table of isotopes, Rev. Mod. Phys, 1944, vol. 16, no. 1, pp. 1–32. doi 10.1103/RevMod-Phys.30.585CrossRefGoogle Scholar
  11. 11.
    Baranov, V.Yu., Izotopy: svoistva, poluchenie, primenenie (Isotopes: Properties, Production, Application), Moscow: Fizmatlit, 2005.Google Scholar
  12. 12.
    Wu, Ts.S. and Moshkovskii, S.A., Beta-raspad (Beta Decay), Moscow: Atomizdat, 1970.Google Scholar
  13. 13.
    Lewis, V.E., Beta decay of tritium, Nucl. Phys. A, 1970, vol. 151, no. 1, pp. 120–128. doi 10.1016/0375-9474(70)90972-3CrossRefGoogle Scholar
  14. 14.
    Daris, R. and St-Pierre, C., Beta decay of tritium, Nucl. Phys. A, 1969, vol. 138, no. 3, pp. 545–555. doi 10.1016/0375-9474(69)90237-1CrossRefGoogle Scholar
  15. 15.
    Windle, W.F., Microwatt radioisotope energy converters, IEEE Trans. Aerospace, 1964, vol. 2, no. 2, pp. 646–651. doi 10.1109/TA.1964.4319649CrossRefGoogle Scholar
  16. 16.
    Rappaport, P. and Linder, E.G., Radioactive charging effects with a dielectric medium, J. Appl. Phys., 1953, vol. 24, no. 9, pp. 1110—1114. doi 10.1063/1.1721457CrossRefGoogle Scholar
  17. 17.
    Müller, S., Shiping, Ch., Daniel, H., Dragoun, O., Dragounovä, N., Hagn, H., Hechtl, E., Hiddemann, K.-H., and Spalek, A., Search for an admixture of a 17 keV neutrino in the ß decay of 35S, Zeitschr. Naturf. A, 1994, vol. 49, no. 9, pp. 874–884. doi 10.1515/zna-1994-0910Google Scholar
  18. 18.
    Thoennessen, M., Discovery of the isotopes with 11 ≤ Z≤ 19, At. Data Nucl. Data Tables, 2012, vol. 98, no. 5, pp. 933–959. doi 10.1016/j.adt.2011.09.002CrossRefGoogle Scholar
  19. 19.
    Meier, D.E., Garnov, A.Y., Robertson, J.D., Kwon, J.W., and Wacharasindhu, T., Production of 35S for a liquid semiconductor betavoltaic, J. Radioanal. Nucl. Chem., 2009, vol. 282, no. 1, pp. 271–274. doi 10.1007/s10967-009-0157-9CrossRefGoogle Scholar
  20. 20.
    R. Bogue, Powering tomorrow's sensor: a review of technologies, Part 1, Sensor Rev., 2010, vol. 30, no. 3, pp. 182–186. doi 10.1108/02602281011051344CrossRefGoogle Scholar
  21. 21.
    Heim, M., Fritsch, A., Schuh, A., Shore, A., et al., Discovery of the krypton isotopes, At. Data Nucl. Data Tables, 2010, vol. 96, no. 4, pp. 333–340. doi 10.1016/j.adt.2010.01.001CrossRefGoogle Scholar
  22. 22.
    Collon, P., Kutschera, W., and Lu, Z.-T., Tracing noble gas radionuclides in the environment, Ann. Rev. Nucl. Part. Sci., 2004, vol. 54, pp. 39–67. doi 10.1146/annurev.nucl.53.041002.110622CrossRefGoogle Scholar
  23. 23.
    Eiting, C.J., Krishnamoorthy, V., Romero, E., and Jones, S., Betavoltaic power cells, in Proceeding of the 42nd Power Sources Conference, 2006, Paper 25.5, pp. 601–605.Google Scholar
  24. 24.
    Thoennessen, M., Discovery of isotopes with Z≤10, At. Data Nucl. Data Tables, 2012, vol. 98, no. 1, pp. 43–62. doi 10.1016/j.adt.2011.08.002CrossRefGoogle Scholar
  25. 25.
    Lewis, G.N. and Spedding, F.H., A spectroscopic search for H3 in concentrated H2, Phys. Rev., 1933, vol. 43, no. 12, pp. 964–966. doi 10.1103/PhysRev.43.964CrossRefGoogle Scholar
  26. 26.
    Eidinoff, M.L., Upper limit to the tritium content of ordinary water, J. Chem. Phys., 1947, vol. 15, no. 6, p. 416. doi 10.1063/1.1746547CrossRefGoogle Scholar
  27. 27.
    Suhaimi, A., Wölfle, R., Qaim, S.M., Warwick, P., and Stöcklin, G., Measurement of 14N(n,t)12C reaction cross section in the energy range of 5.0 to 10.6MeV, Radiochim. Acta, 1988, vol. 43, no. 3, pp. 133–138. doi 10.1524/ract.1988.43.3.133CrossRefGoogle Scholar
  28. 28.
    Oliver, B.M., Farrar, H. IV, and Bretscher, M.M., Tritium half-life measured by helium-3 growth, Appl. Radiat. Isotopes, 1987, vol. 38, no. 11, pp. 959–965. doi 10.1016/0883-2889(87)90268-1CrossRefGoogle Scholar
  29. 29.
    Myers, E.G., Wagner, A., Kracke, H., and Wesson, B.A., Atomic masses of tritium and helium-3, Phys. Rev. Lett., 2015, vol. 114, no. 1, pp. 013003–1-5. doi 10.1103/PhysRevLett.114.013003CrossRefGoogle Scholar
  30. 30.
    Oliphant, M.L.E., Harteck, P., and Rutherford, O.M., Transmutation effects observed with heavy hydrogen, Proc. R. Soc. London A, 1934, vol. 144, no. 853, pp. 692–703. doi 10.1098/rspa.1934.0077CrossRefGoogle Scholar
  31. 31.
    Morgan, L., and Pasley, J., Tritium breeding control within liquid metal blankets, Fusion Eng. Des., 2013, vol. 88, no. 3, pp. 107–112. doi 10.1016/j.fusengdes. 2012.11.011CrossRefGoogle Scholar
  32. 32.
    Matsuura, H., Nakaya, H., Nakao, Y., Shimakawa, S., Goto, M., Nakagawa, Sh., and Nishikawa, M., Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors, Fusion Eng. Des., 2013, vol. 88, nos. 8-9, pp. 2219–2222. doi 10.1016/j.fusengdes.2013.05.022CrossRefGoogle Scholar
  33. 33.
    Engelkemeir, A.G., Hamill, W.H., Inghram, M.G., and Libby, W.F., The half-life of radiocarbon (C14), Phys. Rev., 1949, vol. 75, no. 12, pp. 1825–1833. doi 10.1103/PhysRev.75.1825CrossRefGoogle Scholar
  34. 34.
    Langer, L.M., Motz, J.W., and Price, H.C., Jr., Low energy Beta-Ray spectra: Pm147S35, Phys. Rev., 1950, vol. 77, no. 7, pp. 798–806. doi 10.1103/PhysRev.77.798CrossRefGoogle Scholar
  35. 35.
    Korff, S.A., On the contribution to the ionization at sea-level produced by the neutrons in the cosmic radiation, Terrest. Magn. Atmos. Electr., 1940, vol. 45, no. 2, pp. 133–134. doi 10.1029/TE045i002p00133CrossRefGoogle Scholar
  36. 36.
    Hannä, G.C., Primeau, D.B., and Tunnicliffe, P.R., Thermal neutron cross sections and resonance integrals of the reactions O17(n,a)C14, Ar36n,a)S33, and N14(n,p)C14, Canad. J. Phys., 1961, vol. 39, no. 12, pp. 1784–1806. doi 10.1139/p61-201CrossRefGoogle Scholar
  37. 37.
    Konstantinov, E.A., Korablev N.A., Solov'ev E.N., Shamov V.P., Fedorov V.L., and Litvinov A.M., 14C emission from RBMK-1500 reactors and features determining it, Sov. At. Energy, 1989, vol. 66, no. 1, pp. 77–79. doi 10.1007/BF01121081CrossRefGoogle Scholar
  38. 38.
    Choppin, G., Liljenzin, J.-O., Rydberg, J., and Ekberg, C., Radio chemistry and Nuclear Chemistry, 4th ed., Amsterdam, Boston: Elsevier, 2013. doi 10.1016/B978-0-12-405897-2.01001-6Google Scholar
  39. 39.
    Mannik, L., and Brown, S.K., Laser enrichment of carbon-14, Appl. Phys. B, 1985, vol. 86, no. 2, pp. 79–86. doi 10.1007/BF00692553CrossRefGoogle Scholar
  40. 40.
    Voges, R., Heys, J.R., and Moenius, T., Preparation of Compounds Labeled with Tritium and Carbon-14, New York: Wiley, 2009.CrossRefGoogle Scholar
  41. 41.
    Garofali, K., Robinson, R., and Thoennessen, M., Discovery of chromium, manganese, nickel, and copper isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 2, pp. 356–372. doi 10.1016/j.adt.2011.11.002CrossRefGoogle Scholar
  42. 42.
    Gresits, I., and Tolgyesi, S., Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants, J. Radioanal. Nucl. Chem., 2003, vol. 258, no. 1, pp. 107–112. doi 10.1023/A:1026214310645CrossRefGoogle Scholar
  43. 43.
    Holm, E., Rots, P., and Skwarzec, B., Radioanalytical studies of fallout Ni, Int. J. Radiat. Appl. Instrum., Part A, 1992, vol. 43, nos. 1-2, pp. 371–376. doi 10.1016/0883-2889(92)90107-PCrossRefGoogle Scholar
  44. 44.
    Colle, R., Zimmerman, B.E., Cassette, P., and Laureano-Perez, L., 63Ni, its half-life and standardization: revisited, Appl. Radiat. Isotopes, 2008, vol. 66, no. 1, pp. 60–68. doi 10.1016/j.apradiso.2007.07.017CrossRefGoogle Scholar
  45. 45.
    Gaitskell, R.J., Angrave, L.C., Booth, N.E., Hahn, A.D., and Swift, A.M., A measurement of the beta spectrum of 63Ni using a new type of calorimetric cryogenic detector, Phys. Lett. B, 1996, vol. 370, nos. 1-2, pp. 163–166. doi 10.1016/0370-2693(96)00084-6CrossRefGoogle Scholar
  46. 46.
    Angrave, L.C., Booth, N.E., Gaitskell, R.J., and Salmon, G.L., Measurement of the atomic exchange effect in nuclear P decay, Phys. Rev. Lett., 1998, vol. 80, no. 8, pp. 1610–1613. doi 10.110 3/PhysRevLett. 80.1610CrossRefGoogle Scholar
  47. 47.
    Coursey, B.M., Lucas, L.L., Grau Malonda, A., and Garcia-Torano, E., The standardization of plutonium-241 and nickel-63, Nucl. Instrum. Methods Phys. Res. A, 1989, vol. 279, no. 3, pp. 603–610. doi 10.1016/0168-9002(89)91310-7Google Scholar
  48. 48.
    Le-Bret, C., Loidl, M., Rodrigues, M., Mougeot, X., and Bouchard, J., Study of the influence of the source quality on the determination of the shape factor of beta spectra, J. Low Temp. Phys., 2012, vol. 167, no. 5, pp. 985–990. doi 10.1007/s10909-012-0607-6CrossRefGoogle Scholar
  49. 49.
    Sims, G.H.E. and Juhnke, D.G., The beta self-absorption of Ni63 as metallic nickel, Int. J. Appl. Radiat. Isotopes, 1967, vol. 18, no. 10, pp. 727–728. doi 10.1016/0020-708X(67)90034-8CrossRefGoogle Scholar
  50. 50.
    Gelsema, W.J., Donk, L., Enckevort, J.H.T.F.P., and Blijleven, H.A., The self-absorption of the beta-radiation of 63Ni in metallic nickel sources, J. Chem. Educat., 1969, vol. 46, no. 8, pp. 528–530. doi 10.1021/ed046p528CrossRefGoogle Scholar
  51. 51.
    Barnes, I.L. Garfinkel, S.B., and Mann, W.B., Nickel-63: standardization, half-life and neutron-capture cross-section, Int. J. Appl. Radiat. Isotopes, 1971, vol. 22, no. 12, pp. 777–781. doi 10.1016/0020-708X(71)90143-8CrossRefGoogle Scholar
  52. 52.
    Sosnin, L.J., Suvorov, I.A., Tcheltsov, A.N., and Rogozev, B.I., Production of 63Ni of high specific activity, Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 334, no. 1, pp. 43–44. doi 10.1016/0168-9002(93)90526-NCrossRefGoogle Scholar
  53. 53.
    Numajiri, M., Oki, Y., Suzuki, T., Miura, T., Taira, M., Kanda, Yu., and Kondo, K., Estimation of nickel-63 in steel and copper activated at high-energy accelerator facilities, Appl. Radiat. Isotopes, 1994, vol. 45, no. 4, pp. 509–514. doi 10.1016/0969-8043(94)90116-3CrossRefGoogle Scholar
  54. 54.
    Pustovalov, A.A., Gusev, V.V., Zadde, VV., Petrenko, N.S., Tsvetkov, L.A., and Tikhomirov, A.V., 63Ni-based P-electric current source, At. Energy, 2007, vol. 103, no. 6, pp. 353–356. doi 10.1007/s10512-007-0151-7CrossRefGoogle Scholar
  55. 55.
    Parker, A.M. and Thoennessen, M., Discovery of rubidium, strontium, molybdenum, and rhodium isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 4, pp. 812–831. doi 10.1016/j.adt.2012.06.001CrossRefGoogle Scholar
  56. 56.
    Nystrom, A. and Thoennessen, M., Discovery of yttrium, zirconium, niobium, technetium, and ruthenium isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 2, pp. 95–119. doi 10.1016/j.adt.2011.12.002CrossRefGoogle Scholar
  57. 57.
    Horwitz, E.P., Dietz, M.L., and Fisher, D.E., SREX: A new process for the extraction and recovery of strontium from acidic nuclear waste streams, Solvent Extract. Ion Exchange, 1991, vol. 9, no. 1, pp. 1–25. doi 10.1080/07366299108918039CrossRefGoogle Scholar
  58. 58.
    Loferski, J.J. and Rappaport, P., Radiation damage in Ge and Si detected by carrier lifetime changes: damage thresholds, Phys. Rev., 1958, vol. 111, no. 2, pp. 432–439.CrossRefGoogle Scholar
  59. 59.
    Flicker, H., Loferski, J.J., and Elleman, T.S., Construction of a promethium-147 atomic battery, IEEE Trans. Electron Dev., 1964, vol. 11, no. 1, pp. 2–8. doi 10.1109/T-ED.1964.15271CrossRefGoogle Scholar
  60. 60.
    Manjunatha, H.C. and Rudraswamy, B., External bremsstrahlung of 90Sr-90Y, 147Pm and 204Tl in detector compounds, Radiat. Phys. Chem., 2013, vol. 85, pp. 95–101. doi 10.1016/j.radphyschem.2012.12.022CrossRefGoogle Scholar
  61. 61.
    May, E. and Thoennessen, M., Discovery of cesium, lanthanum, praseodymium and promethium isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 5, pp. 960–982. doi 10.1016/j.adt.2011.09.005CrossRefGoogle Scholar
  62. 62.
    Reader, J. and Davis, S.P., Promethium 147 hyperfine structure under high resolution, J. Opt. Soc. Am., 1963, vol. 53, no. 4, pp. 431–435. doi 10.1364/JOSA.53.000431CrossRefGoogle Scholar
  63. 63.
    Gorshkov, V.K., Ivanov, R.N., Kukabadze, G.M., and Reformatsky, I.A., 235U Fission product yields in the rare earth region, J. Nucl. Energy, 1958, vol. 8, nos. 1-3, pp. 69–73. doi 10.1016/0891-3919(58)90010-XGoogle Scholar
  64. 64.
    Lee, C.-S., Wang, Y.-M., Cheng, W.-L., and Ting, G., Chemical study on the separation and purification of promethium-147, J. Radioanal. Nucl. Chem., 1989, vol. 130, no. 1, pp. 21–37. doi 10.1007/BF02037697CrossRefGoogle Scholar
  65. 65.
    Yoshida, M., Sumiya, S., Watanabe, H., and Tobita, K., A rapid separation method for determination of promethium-147 and samarium-151 in environmental samples with high performance liquid chromatography, J. Radioanal. Nucl. Chem., 1995, vol. 197, no. 2, pp. 219–227. doi 10.1007/BF02036001CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Bykov
    • 1
    Email author
  • M. D. Malinkovich
    • 1
  • I. V. Kubasov
    • 1
  • A. M. Kislyuk
    • 1
  • D. A. Kiselev
    • 1
  • S. V. Ksenich
    • 1
  • R. N. Zhukov
    • 1
  • A. A. Temirov
    • 1
  • M. V. Chichkov
    • 1
  • A. A. Polisan
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.The National University of Science and Technology MISiSMoscowRussia

Personalised recommendations