Russian Microelectronics

, Volume 45, Issue 8–9, pp 619–624 | Cite as

Surface dipole ordering in submicron polydiphenylenephthalide films

  • D. D. KaramovEmail author
  • D. A. Kiselev
  • M. D. Malinkovich
  • V. M. Kornilov
  • A. N. Lachinov
  • R. M. Gadiev


This work is dedicated to the elucidation of surface dipole ordering in nanoscale thin polymer layers. The experimental study of submicron-film dielectric electroactive polydiphenylenephthalide polymer has revealed that it is composed of the side phthalide groups with a relatively large dipole moment. The interest in this polymer is due to the abnormally high conductivity of the polymer/polymer interface, which has previously been associated with the possible superficial ordering of phthalide groups. Piezoresponse force microscopy has been used to explore the surface of submicron films produced by centrifugation. The manifestation of the spontaneous polarization indicates the dipole ordering. Besides this, the polarization and relaxation in samples with different thicknesses have been investigated in order to determine the volume and the surface contribution to the polarization films. A reduction in the thickness is established to amplify the piezoelectric response of the signal and the electrically generated domains acquire the ideal radial shape. This confirms the predominant contribution to the orientation processes from the surface layers of the polymer film. The polarization switching manifested as the alteration of the contrast of the piezoelectric response signal in the applied different-polarity fields has been highlighted. The presence of these surface phenomena is involved to explain the unique electronic properties of the interfaces in the polar organic dielectrics.


thin polymer films surface polarization polydiphenylenephthalide dipole ordering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bune, A.V., Fridkin, V.M., Ducharme, S., Blinov, L.M., Palto, S.P., Sorokin, A.V., Yudin, S.G., and Zlatkin, A., Two-dimensional ferroelectric films, Nature, 1998, vol. 391, no. 6670, pp. 874–877.CrossRefGoogle Scholar
  2. 2.
    Fridkin, V.M. and Ducharme, S., Ferroelectricity at the nanoscale, Phys. Usp., 2014, vol. 57, no. 6, pp. 597–603. doi 10.3367/UFNr.0184.201406d.0645CrossRefGoogle Scholar
  3. 3.
    Khan, M.A., Bhansali, U.S., Almadhoun, M.N., Odeh, I.N., Cha, D., and Alshareef, H.N., High-performance ferroelectric memory based on phase-separated films of polymer blends, Adv. Funct. Mater., 2014, vol. 24, no. 10, pp. 1372–1381.CrossRefGoogle Scholar
  4. 4.
    Blinov, L.M., Fridkin, V.M., Palto, S.P., Bune, A.V., Dowben, P.A., and Ducharme, S., Two-dimensional ferroelectrics, Phys. Usp., 2000, vol. 43, no. 3, pp. 243–257. doi 10.1070/PU2000v043n03ABEH000639CrossRefGoogle Scholar
  5. 5.
    Alves, H., Molinari, A.S., Xie, H., and Morpurgo, A.F., Metallic conduction at organic charge-transfer interfaces, Nat. Mater., 2008, vol. 7, no. 7, pp. 574–580. doi 10.1038/nmat2205CrossRefGoogle Scholar
  6. 6.
    Gadiev, R.M., Lachinov, A.N., Salikhov, R.B., Rakhmeev, R.G., Kornilov, V.M., and Yusupov, A.R., The conducting polymer/polymer interface, Appl. Phys. Lett., 2011, vol. 98, no. 17, pp. 173301-1–173305-3. doi 10.1063/1.3584135Google Scholar
  7. 7.
    Gadiev, R.M., Lachinov, A.N., Galiev, A.F., Kalimullina, L.R., and Nabiullin, I.R., Effect of dipole ordering on the electrical properties of the interface between two organic insulators, JETP Lett., 2014, vol. 100, no. 4, pp. 251–255. doi 10.1134/S0021364014160061CrossRefGoogle Scholar
  8. 8.
    Peter, F., Piezoresponse Force Microscopy and Surface Effects of Perovskite Ferroelectric Nanostructures, Vol. 11 of Reihe Informationstechnik, Schriften des Forschungszentrums Jülich, Jülich: Forschungszentrums Jülich, 2006.Google Scholar
  9. 9.
    Bystrov, V.S., Bdikin, I.K., Kiselev, D.A., Yudin, S., Fridkin, V.M., and Kholkin, A.L., Nanoscale polarization patterning of ferroelectric Langmuir-Blodgett P (VDF-TrFE) films, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 15, pp. 4571–4577. doi 10.1088/0022-3727/40/15/030CrossRefGoogle Scholar
  10. 10.
    Wu, C.R., Lachinov, A.N., Johansson, N., Stafström, S., Kugler, T., Rasmusson, J., and Salaneck, W.R., Some chemical and electronic structures of the non-conjugated polymer poly(3,3’-phthalidylidene-4,4’-biphenylene), Synth. Met., 1994, vol. 67, no. 1, pp. 125–128. doi 10.1016/0379-6779(94)90024-8CrossRefGoogle Scholar
  11. 11.
    Kukhta, A., Kukhta, I., and Salazkin, S., Polydiphenylenephthalide: optical spectroscopy and DFT calculations, Mater. Sci., 2011, vol. 17, no. 3, pp. 266–270.Google Scholar
  12. 12.
    Kiselev, D.A., Zhukov, R.N., Ksenich, S.V., Kozlova, A.P., Bykov, A.S., Malinkovich, M.D., and Parkhomenko, Yu.N., Investigation of the ferroelectric properties and dynamics of nanodomains in LiNbO3 thin films grown on Si(100) substrate by scanning probe microscopy techniques, Thin Solid Films, 2014, vol. 556, pp. 142–145. doi 10.1016/j.tsf.2014.01.041CrossRefGoogle Scholar
  13. 13.
    Kiselev, D.A., Kholkin, A.L., Bogomolov, A.A., Sergeeva, O.N., Kaptelov, E.Y., and Pronin, I.P., Piezo- and pyroelectric hysteresis in thin unipolar PZT films, Tech. Phys. Lett., 2008, vol. 34, no. 8, pp. 646–649. doi 10.1134/S1063785008080063Google Scholar
  14. 14.
    Kholkin, A.L., Brooks, K.G., Taylor, D.V., Hiboux, S., and Setter, N., Self-polarization effect in Pb(Zr, Ti)O3 thin films, Integr. Ferroelectr., 1998, vol. 22, nos. 1–4, pp. 525–533. doi 10.1080/10584589808208071CrossRefGoogle Scholar
  15. 15.
    Jonscher, A.K., Universal Relaxation Law, London: Chelsea Dielectric, 1996.Google Scholar
  16. 16.
    Kornilov, V.M. and Lachinov, A.N., Electron-microscopic analysis of polymer thin films capable of switching to the conductive state, Synth. Met., 1992, vol. 53, no. 1, pp. 71–76. doi 10.1016/0379-6779(92)90009-8CrossRefGoogle Scholar
  17. 17.
    Kiselev, D.A., Zhukov, R.N., Bykov, A.S., Malinkovich, M.D., Parkhomenko, Yu.N., and Vygovsksya, E.A., Initiation of polarized state in lithium niobate thin films synthesized on isolated silicon substrates, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2012, no. 2, pp. 25–29.Google Scholar
  18. 18.
    Lines, M.E. and Glass, A.M., Principles and Application of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. D. Karamov
    • 1
    • 3
    Email author
  • D. A. Kiselev
    • 2
  • M. D. Malinkovich
    • 2
  • V. M. Kornilov
    • 1
  • A. N. Lachinov
    • 1
    • 3
  • R. M. Gadiev
    • 1
  1. 1.Bashkir State Pedagogical UniversityUfaRussia
  2. 2.National Research University of Science and Technology MISISMoscowRussia
  3. 3.Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations