Russian Microelectronics

, Volume 45, Issue 7, pp 460–463 | Cite as

TCAD leakage current analysis of a 45 nm MOSFET structure with a high-k dielectric

  • K. O. PetrosyantsEmail author
  • D. A. Popov
  • L. M. Sambursky
  • I. A. Kharitonov


The models of electrophysical effects builtinto Sentaurus TCAD have been tested. The models providing an adequate modeling of deep submicron high-k MOSFETs have been selected. The gate and drain leakage currents for 45 nm MOSFETs with polysilicon gate and SiO2, SiO2/HfO2 and HfO2 gate dielectrics have been calculated using TCAD. It has been shown that the replacement of the traditional SiO2 gate oxide by an equivalent HfO2 dielectric reduces the gate leakage current by several orders of magnitude due to the elimination of the impact of the tunneling effect. Besides, the threshold voltage, saturation drain current, mobility, transconductance, etc., degrade within a range of 10–20%.


MOSFET high-k dielectric leakage current physical models TCAD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Technology Roadmap for Semiconductors. Cited September 12, 2014.Google Scholar
  2. 2.
    Wong, H. and Iwai, H., On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale mos transistors, Microelectron. Eng., 2006, vol. 83, pp. 1867–1904.CrossRefGoogle Scholar
  3. 3.
    Intel’s revolutionary 22 nm transistor technology, Intel Presentation, May, 2011.Google Scholar
  4. 4. Cited September 12, 2014.Google Scholar
  5. 5. Scholar
  6. 6. Cited September 12, 2014.Google Scholar
  7. 7.
    Tadashi, F., Yasushi, N., Toshifumi, T., and Kiyotaka, I., A new high-k transistor technology implemented in accordance with the 55nm design rule process, NEC Tech. J., 2006, vol. 1, no. 5, pp. 42–46.Google Scholar
  8. 8.
    TCAD Sentaurus User Manual J-2014.09, Synopsys.Google Scholar
  9. 9.
    Sharma, R.K., Gupta, M., and Gupta, R.S., TCAD assessment of device design technologies for enhanced performance of nanoscale DGMOSFET, IEEE Trans. Electron. Dev., 2011, vol. 58, no. 9, pp. 2936–2943.CrossRefGoogle Scholar
  10. 10.
    Yadav, S., Srivastava, A., Rahul, J., and Kishor, K. Jha., TCAD assessment of nonconventional dual insulator double gate MOSFET, in Proceedings of the International Conference on Devices, Circuits and Systems ICDCS 2012, Coimbatore, India, March 15–16, 2012.Google Scholar
  11. 11.
    Chaujar, R., Kaur, R. Saxena, M., et al., TCAD assessment of gate electrode work function engineered recessed channel (GEWE-RC) MOSFET and its multilayered gate architecture. Part I: Hot-carrier-reliability evaluation, IEEE Trans. Electron Dev., 2008, vol. 55, no. 10, pp. 2601–2613.CrossRefGoogle Scholar
  12. 12.
    Ashwani, K.R., Narottam, Ch., and Vinod, K., TCAD based analysis of gate leakage current for high-k gate stack MOSFET, ACEEE Int. J. Commun., 2011, vol. 02, no. 01, pp. 5–8.Google Scholar
  13. 13.
    Shashank, N., Basak, S., and Nahar, R.K., Design and simulation of nano scale high-k based MOSFETs with poly silicon and metal gate electrodes, Int. J. Adv. Technol., 2010, vol. 1, no. 2, pp. 252–261.Google Scholar
  14. 14.
    Gusev, E.P., Cartier, E., Buchanan, D.A., et al., Ultrathin high-k metal oxides on silicon: processing, characterization and integration issues, Microelectron. Eng., 2001, vol. 59, nos. 1–4, pp. 341–349.Google Scholar
  15. 15.
    Zhu, W.J., Ma, T.P., Zafar, S., and Tamagawa, T., Charge trapping in ultrathin hafnium oxide, IEEE Electron Dev. Lett., 2002, vol. 23, no. 10, pp. 597–599.CrossRefGoogle Scholar
  16. 16.
    Shashank, N., Singh Vikram, Taube, W.R., and Nahar, R.K., Role of interface charges on high-k based poly-si and metal gate nano-scale MOSFETs, J. Nano-Electron. Phys., 2011, vol. 3, no. 1, pp. 937–941.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. O. Petrosyants
    • 1
    • 2
    Email author
  • D. A. Popov
    • 1
  • L. M. Sambursky
    • 1
    • 2
  • I. A. Kharitonov
    • 1
  1. 1.National Research University Higher School of EconomicsMoscow Institute of Electronics and MathematicsMoscowRussia
  2. 2.Institute for Design Problems in MicroelectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations