Advertisement

Russian Microelectronics

, Volume 45, Issue 4, pp 242–255 | Cite as

Secondary ion mass spectrometry study of the formation of a nanometer oxide film on a titanium nitride surface

  • V. M. MordvintsevEmail author
  • V. V. Naumov
  • S. G. Simakin
Article

Abstract

Using secondary ion mass spectrometry, we investigate the oxidation of titanium nitride films fabricated by reactive magnetron sputtering under specific conditions of burning plasma in the argon and oxygen mixture in a vacuum chamber of a magnetron sputtering facility at annealing temperatures ranging from 350 to 440°С and times ranging from 2 to 11 min. It is shown that the oxidation is activated by the plasma, while thermal activation plays a secondary role. The oxide layer consists of the TiO2 layer and (3–5)-nm-thick intermediate layer between it and the bulk of titanium nitride, which is homogeneous over the sample surface and enriched with oxygen-containing complexes. The titanium dioxide layer thickness lies within 2–3.5 nm and depends on the annealing conditions. The effect of different factors on the layer thicknesses is investigated. The expression is obtained that satisfactorily describes the dependence of the TiO2 layer thickness on annealing temperature and time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wittmer, M., Noser, J., and Melchior, H., Oxidation kinetics of TiN thin films, J. Appl. Phys., 1981, vol. 52, no. 11, pp. 6659–6664.CrossRefGoogle Scholar
  2. 2.
    Suni, I., Sigurd, D., Ho, K.T., and Nicolet, M.-A., Thermal oxidation of reactively sputtered titanium nitride and hafnium nitride films, J. Electrochem. Soc.: Solid-State Sci. Technol., 1983, vol. 130, no. 5, pp. 1210–1214.CrossRefGoogle Scholar
  3. 3.
    Saha, N.C. and Tompkins, N.G., Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study, J. Appl. Phys., 1992, vol. 72, pp. 3072–3078.CrossRefGoogle Scholar
  4. 4.
    Lu, F.-H. and Chen, H.-Y., XPS analyses of TiN films on Cu substrates after annealing in the controlled atmosphere, Thin Solid Films, 1999, vols. 355–356, pp. 374–379.CrossRefGoogle Scholar
  5. 5.
    Logothetidis, S., Meletis, E.I., Stergioudis, G., and Adjaottor, A.A., Room temperature oxidation behavior of TiN thin films, Thin Solid Films, 1999, vol. 338, pp. 304–313.CrossRefGoogle Scholar
  6. 6.
    Yin, Y., Hang, L., Zhang, S., and Bui, X.L., Thermal oxidation properties of titanium nitride and titaniumaluminum nitride materials—a perspective for high temperature air-stable solar selective absorber applications, Thin Solid Films, 2007, vol. 515, pp. 2829–2832.CrossRefGoogle Scholar
  7. 7.
    Van Bui, H., Groenland, A.W., Aarnink, A.A.I., Wolters, R.A.M., Schmitz, J., and Kovalgin, A.Y., Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry, J. Electrochem. Soc., 2011, vol. 158, no. 3, pp. H214–H220.CrossRefGoogle Scholar
  8. 8.
    Mordvintsev, V.M. and Kudryavtsev, S.E., Investigation of electrical characteristics of memory cells based on self-forming conducting nanostructures in a form of the TiN–SiO2–W open sandwich structure, Russ. Microelectron., 2013, vol. 42, no. 2, pp. 68–78.CrossRefGoogle Scholar
  9. 9.
    Mordvintsev, V.M., Kudryavtsev, S.E., and Levin, V.L., Electroforming as a process in the self-formation of conducting nanostructures for the nonvolatile electrically reprogrammable memory elements, Nanotechnol. Russ., 2009, vol. 4, nos. 1–2, pp. 121–128.CrossRefGoogle Scholar
  10. 10.
    Lukin, O.V. and Magunov, A.N., Determination of the instant of etching completion by a calorimetric method, Russ. Microelectron., 1998, vol. 27, no. 6, pp. 378–385.Google Scholar
  11. 11.
    Groenland, A.W., Brunets, I., Boogaard, A., Aarnink, A.A.I., Kovalgin, A.Y., and Schmitz, J., Thermal and plasma-enhanced oxidation of ALD TiN, in Proceeding of 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, Netherlands: Veldhaven, 2008, pp. 468–471.Google Scholar
  12. 12.
    Hauffe, K., Reaktionen in und an festen Stoffen (Reactions in Solids and Their Surfaces), Berlin: Springer, 1962, Pt. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Mordvintsev
    • 1
    Email author
  • V. V. Naumov
    • 1
  • S. G. Simakin
    • 1
  1. 1.Institute of Physics and Technology, Yaroslavl’ BranchRussian Academy of SciencesYaroslavl’Russia

Personalised recommendations