Russian Microelectronics

, Volume 45, Issue 3, pp 153–166 | Cite as

Nanoelectromechanical diamond structures in quantum informatics. Part II

  • A. V. Tsukanov


The second part of the review is devoted to the theoretical description of diamond nanoelectromechanical devices interacting with nitrogen-vacancy centers in diamond in the coherent mode with a certain number of quanta. The experimental data are reported that reflect the features of the dynamic and spectral properties of such hybrid structures. The possibilities of the application of the hybrid structures in implementing one- and two-qubit operations, as well as in auxiliary procedures, including cooling, measuring, and generating nonclassical states, are discussed.


RUSSIAN Microelectronics Rabi Frequency Microwave Field Charge Qubit Nonclassical State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsukanov, A.V., Nanoelectromechanical diamond structures in quantum informatics. Part I, Mikroelektronika (in press).Google Scholar
  2. 2.
    Habraken, S.J.M., Stannigel, K., Lukin, M.D., Zoller, P., and Rabl, P., Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys., 2012, vol. 14, no. 11, p. 115004.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rabl, P., Cappellaro, P., Gurudev, D.M.V., Jiang, L., Maze, J.R., and Lukin, M.D., Strong magnetic coupling between an electronic spin qubit and a mechanical resonator, Phys. Rev. B, 2009, vol. 79, no. 4, p. 041302.CrossRefGoogle Scholar
  4. 4.
    Xu, Z.Y., Hu, Y.M., Yang, W.L., Feng, M., and Du, J.F., Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever, Phys. Rev. A, 2009, vol. 80, no. 2, p. 022335.CrossRefGoogle Scholar
  5. 5.
    Zhou, L., Wei, L.F., Gao, M., and Wang, X., Strong coupling between two distant electronic spins via a nanomechanical resonator, Phys. Rev. A, 2010, vol. 81, no. 4, p. 042323.CrossRefGoogle Scholar
  6. 6.
    Chotorlishvili, L., Sander, D., Sukhov, A., Dugaev, V., Vieira, V.R., Komnik, A., and Berakdar, J., Entanglement between nitrogen vacancy spins in diamond controlled by a nanomechanical resonator, Phys. Rev. B, 2013, vol. 88, no. 8, p. 085201.CrossRefGoogle Scholar
  7. 7.
    Pigeau, B., Rohr, S., Mercier de Lepinay, L., Gloppe, A., Jacques, V., and Arcizet, O., Observation of a phononic Mollow triplet in a hybrid spin-nanomechanical system, arXiv:1502.07071.Google Scholar
  8. 8.
    Rabl, P., Kolkowitz, S.J., Koppens, F.H.L., Harris, J.G.E., Zoller, P., and Lukin, M.D., A quantum spin transducer based on nanoelectromechanical resonator arrays, Nature Phys., 2010, vol. 6, no. 8, p. 602.CrossRefGoogle Scholar
  9. 9.
    Wei, B.-B., Burk, C., Wrachtrup, J., and Liu, R.-B., Magnetic ordering of nitrogen-vacancy centers in diamond via resonator-mediated coupling, arXiv:1503.07625.Google Scholar
  10. 10.
    Bin, W. and Zhu, K.-D., Microwave probe for intrinsic parameters in a hybrid spin-nanoresonator system, J. Appl. Phys., 2013, vol. 113, no. 12, p. 124306.CrossRefGoogle Scholar
  11. 11.
    Bennett, S.D., Kolkowitz, S., Unterreithmeier, Q.P., Rabl, P., Jayich, A.C., Harris, J.G.E., and Lukin, M.D., Measuring mechanical motion with a single spin, New J. Phys., 2012, vol. 14, no. 12, p. 125004.CrossRefGoogle Scholar
  12. 12.
    Gao, M., Wu, C.-W., Deng, Z.-J., Zou, W.-J., Zhou, L., Li, C.-Z., and Wang, X.-B., Controllable strong coupling between individual spin qubits and a transmission line resonator via nanomechanical resonators, Phys. Lett. A, 2012, vol. 376, p. 595.CrossRefGoogle Scholar
  13. 13.
    Chen, Q., Xu, Z., and Feng, M., Entanglement generation of nitrogen-vacancy centers via coupling to nanometer-sized resonators and a superconducting interference device, Phys. Rev. A, 2010, vol. 82, no. 1, p. 014302.CrossRefGoogle Scholar
  14. 14.
    Li, P.-B., Liu, Y.-C., Gao, S.-Y., Xiang, Z.-L., Rabl, P., Li, F.-L., and Xiao, Y.-F., Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities, arXiv:1503.02437.Google Scholar
  15. 15.
    Grinolds, M.S., Maletinsky, P., Hong, S., Lukin, M.D., Walsworth, R.L., and Yacoby, A., Quantum control of proximal spins using nanoscale magnetic resonance imaging, Nature Phys., 2011, vol. 7, p. 687.CrossRefGoogle Scholar
  16. 16.
    Plakhotnik, T., Doherty, M.W., and Manson, N.B., Electron-phonon processes of the nitrogen-vacancy center in diamond, Phys. Rev. B, 2015, vol. 92, no. 8, p. 081203.CrossRefGoogle Scholar
  17. 17.
    Santori, C. and Beausoleil, R.G., Phonons in diamond crystals, Nature Photon., 2012, vol. 6, no. 1. p. 10CrossRefGoogle Scholar
  18. 17a.
    Lee, K.C., Sussman, B.J., Sprague, M.R., Michelberger, P., Reim, K.F., Nunn, J., Langford, N.K., Bustard, P.J., Jaksch, D., and Walmsley, I.A., Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond, Nature Photon., 2012, vol. 6, no. 1, p. 41.CrossRefGoogle Scholar
  19. 18.
    Albrecht, A., Retzker, A., Jelezko, F., and Plenio, M.B., Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons, New J. Phys., 2013, vol. 15, no. 8, p. 083014.CrossRefGoogle Scholar
  20. 19.
    Kuhlicke, A., Schell, A.W., Zoll, J., and Benson, O., Nitrogen vacancy center fluorescence from a submicron diamond cluster levitated in a linear quadrupole ion trap, Appl. Phys. Lett., 2014, vol. 105, no. 7, p. 073101.CrossRefGoogle Scholar
  21. 20.
    Yin, Z., Li, T., Zhang, X., and Duan, L.M., Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling, Phys. Rev. A, 2013, vol. 88, no. 3, p. 033614.CrossRefGoogle Scholar
  22. 21.
    Bennett, S.D., Yao, N.Y., Otterbach, J., Zoller, P., Rabl, P., and Lukin, M.D., Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing, Phys. Rev. Lett., 2013, vol. 110, no. 15, p. 156402.CrossRefGoogle Scholar
  23. 22.
    Zhang, Y.-L., Zou, C.-L., Zou, X.-B., Jiang, L., and Guo, G.-C., Phonon-induced spin squeezing based on geometric phase, Phys. Rev. A, 2015, vol. 92, no. 1, p. 013825.CrossRefGoogle Scholar
  24. 23.
    Kepesidis, K.V., Bennett, S.D., Portolan, S., Lukin, M.D., and Rabl, P., Phonon cooling and lasing with nitrogenvacancy centers in diamond, Phys. Rev. B, 2013, vol. 88, no. 6, p. 064105.CrossRefGoogle Scholar
  25. 24.
    Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A., and Maletinsky, P., Strong mechanical driving of a single electron spin, arXiv:1503.06793.Google Scholar
  26. 25.
    Macquarrie, E.R., Gosavi, T.A., Moehle, A.M., Jungwirth, N.R., Bhave, S.A., and Fuchs, G.D., Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator, Optica, 2015, vol. 2, no. 3, p. 233.CrossRefGoogle Scholar
  27. 26.
    Macquarrie, E.R., Gosavi, T.A., Bhave, S.A., and Fuchs, G.D., Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator, arXiv:1510.01194.Google Scholar
  28. 27.
    Rath, P., Ummethala, S., Diewald, S., Lewes-Malandrakis, G., Brink, D., Heidrich, N., Nebel, C., and Pernice, W.H.P., Diamond electro-optomechanical resonators integrated in nanophotonic circuits, Appl. Phys. Lett., 2014, vol. 105, no. 25, p. 251102.CrossRefGoogle Scholar
  29. 28.
    Kipfstuhl, L., Guldner, F., Riedrich-Moller, J., and Becher, C., Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond, Opt. Express, 2014, vol. 22, no. 5, p. 12410.CrossRefGoogle Scholar
  30. 29.
    Frimmer, M., Mohtashami, A., Femius Koenderink, A., Nanomechanical method to gauge emission quantum yield applied to nitrogen-vacancy centers in nanodiamond, Appl. Phys. Lett., 2013, vol. 102, no. 12, p. 121105.CrossRefGoogle Scholar
  31. 30.
    Imboden, M., Williams, O.A., and Mohanty, P., Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing, Nano Lett., 2013, vol. 13, no. 8, p. 4014.CrossRefGoogle Scholar
  32. 31.
    Sohn, Young-Ik., Burek, M.J., and Loncar, M., Dynamic actuation of single-crystal diamond nanobeams, arXiv:1408.5822.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations