Advertisement

Russian Microelectronics

, Volume 45, Issue 3, pp 167–179 | Cite as

Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma

  • A. S. ShumilovEmail author
  • I. I. Amirov
  • V. F. Lukichev
Article

Abstract

The model and the results of the modeling of etching deep grooves in Si in Сl2/Ar plasma as a function of the energy of Cl+ and Ar+ incident ions (30–250 eV), taking into consideration the redeposition of the reaction products, which are removed from the groove bottom, are represented. The groove profiles with an aspect ratio (depth-to-width groove ratio) below 5 and Si atom yield coefficients per ion as a function of the incident ion energy were in agreement with the reference data. The profile evolution of the deep grooves with an aspect ratio (AR) of up to 10 at different energies of the incident ions is shown. The influence of the redeposition coefficient of the scattered particles and the shape of the mask on the groove profile is considered. The reasons for distorting the profile of the high-aspect grooves during their etching in the Сl2/Ar plasma are discussed.

Keywords

RUSSIAN Microelectronics SiCl Yield Coefficient Deep Groof Adhesion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donnelly, V.M. and Kornblit, A., Plasma etching: yesterday, today, and tomorrow, J. Vac. Sci. Technol. A, 2013, vol. 31, no. 5, p. 050825-1.CrossRefGoogle Scholar
  2. 2.
    Tinck, S., Boullar, W., and Bogaerts, A., Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating, Plasma Sources Sci. Technol., 2011, vol. 20, no. 4, p. 045012-19.CrossRefGoogle Scholar
  3. 3.
    Lane, J.M., Klemens, F.P., Bogart, K.H.A., Malyshev, M.V., and Lee, J.T.C., Feature evolution during plasma etching. polycrystalline silicon etching, J. Vac. Sci. Technol. A, 2000, vol. 18, no. 1, pp. 188–196.CrossRefGoogle Scholar
  4. 4.
    Chang, S.J., Arnold, J.C., Zau, G.C., Shin, H.-S., and Sawin, H.H., Kinetic study of low energy argon ionenhanced plasma etching of polysilicon with atomic/molecular chlorine, J. Vac. Sci. Technol., 1997, vol. 15, no. 4, pp. 1853–1864.CrossRefGoogle Scholar
  5. 5.
    Chang, J.P., Mahorowala, A.P., and Sawin, H.H., Plasma-surface kinetics and feature profile evolution in chlorine etching of polysilicon, J. Vac. Sci. Technol. A, 1998, vol. 16, no. 1, pp. 217–224.CrossRefGoogle Scholar
  6. 6.
    Hoekstra, R.J., Grapperhaus, M.J., and Kushner, M.J., Integrated plasma equipment model for polysilicon etch profiles in an inductively coupled plasma reactor with subwafer and superwafer topography, J. Vac. Sci. Technol. A, 1997, vol. 15, no. 4, pp. 1913–1921.CrossRefGoogle Scholar
  7. 7.
    Abdollahi-Alibeik, S., Zheng, J., McVittie, J.P., Saraswat, K.C., Gabriel, C.T., and Abraham, S.C., Analytical modeling of silicon etch process in high density plasma, J. Vac. Technol. B, 2001, vol. 19, no. 1, pp. 179–185.CrossRefGoogle Scholar
  8. 8.
    Mahorowala, A.P. and Sawin, H.H., Etching of polysilicon in inductively coupled Cl2 and HBr discharges. II. Simulation of profile evolution using cellular representation of feature composition and Monte Carlo computation of flux and surface kinetics, J. Vac. Technol. B, 2002, vol. 20, no. 3, pp. 1064–1076.CrossRefGoogle Scholar
  9. 9.
    Jin, W. and Sawin, H.H., Feature profile evolution in high-density plasma etching of silicon with Cl2, J. Vac. Sci. Technol. A, 2003, vol. 21, no. 4, pp. 911–921.CrossRefGoogle Scholar
  10. 10.
    Osano, Y. and Ono, K., An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching, Jpn. J. Appl. Phys., 2005, vol. 44, pp. 8650–8660.CrossRefGoogle Scholar
  11. 11.
    Yin, Y. and Sawin, H.H., Angular etching yields of polysilicon and dielectric materials in Cl2/Ar and fluorocarbon plasmas, J. Vac. Sci. Technol. A, 2008, vol. 26, no. 13, pp. 161–173.CrossRefGoogle Scholar
  12. 12.
    Guo, W. and Sawin, H.H., Modeling of the angular dependence of plasma etching, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 6, pp. 1326–1336.CrossRefGoogle Scholar
  13. 13.
    Wang, M. and Kushner, M.J., High energy electron fluxes in dc-augmented capacitively coupled plasmas. II. Effects on twisting in high aspect ratio etching of dielectrics, J. Appl. Phys., 2010, vol. 107, no. 2, p. 023309.CrossRefGoogle Scholar
  14. 14.
    Agarwal, A. and Kushner, M.J., Plasma atomic layer etching using conventional plasma equipment, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 1, pp. 37–50.CrossRefGoogle Scholar
  15. 15.
    Shumilov, A.S. and Amirov, I.I., Modeling of deep grooving of silicon in the process of plasmochemical cyclic etching/passivation, Russ. Microelectron., 2007, vol. 36, no. 4, pp. 241–250.CrossRefGoogle Scholar
  16. 16.
    Eckstein, W., Computer Simulation of Ion-Solid Interactions, Berlin: Springer, 1991.Google Scholar
  17. 17.
    Cheng, C.C., Guinn, K.V., Donnelly, V.M., and Herman, I.P., In situ laser-induced thermal desorption studies of the silicon chloride surface layer during silicon etching in high density plasmas of Cl2 and Cl2/O2 mixtures, J. Vac. Sci. Technol. A, 1994, vol. 12, p. 2630.CrossRefGoogle Scholar
  18. 18.
    Guo, W., Bai, B., and Sawin, H.H., Mixing-layer kinetics model for plasma etching and the cellular realization in three-dimensional profile simulator, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 2, pp. 388–403.CrossRefGoogle Scholar
  19. 19.
    Belen, J.R., Gomez, S., Kiehbauch, M., Cooperberg, D., and Aydil, E.S., Feature-scale model of Si etching in SF6 plasma and comparison with experiments, J. Vac. Sci. Technol. A, 2005, vol. 23, no. 1, pp. 99–113.CrossRefGoogle Scholar
  20. 20.
    Liu, X.-Y., Daw, M.S., Kress, J.D., Hanson, D.E., Arunachalam, V., Coronell, D.G., Liu, C.-L., and Voter, A.F., Ion solid surface interactions in ionized copper physical vapor deposition, Thin Solid Films, 2002, vol. 422, pp. 141–149.CrossRefGoogle Scholar
  21. 21.
    Steinbruchel, C., Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy, Appl. Phys. Lett., 1989, vol. 55, pp. 1960–1962.CrossRefGoogle Scholar
  22. 22.
    Hoekstra, R.J. and Kushner, M.J., Microtrenching resulting from specular during chlorine etching of silicon, J. Vac. Technol. B, 1998, vol. 16, no. 4, pp. 2102–2104.CrossRefGoogle Scholar
  23. 23.
    Coburn, J.W. and Winters, H.F., Conductance considerations in the reactive ion etching of high aspect ratio features, Appl. Phys. Lett., 1989, vol. 55, no. 26, pp. 2730–2732.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. S. Shumilov
    • 1
    Email author
  • I. I. Amirov
    • 1
  • V. F. Lukichev
    • 2
  1. 1.Yaroslavl Branch, Physico-Technological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Physico-Technological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations