Advertisement

Russian Microelectronics

, Volume 43, Issue 8, pp 559–564 | Cite as

Photoelectric converters in a system with spectral splitting of the solar energy

  • S. Yu. Kurin
  • V. D. Doronin
  • A. A. Antipov
  • B. P. Papchenko
  • H. Helava
  • M. I. Voronova
  • A. S. Usikov
  • Yu. N. Makarov
  • K. B. Eidel’man
Article
  • 56 Downloads

Abstract

The results of modeling photoelectric converters in a system with spectral splitting of solar energy are detailed. The solar radiation in this system is divided into three spectral regions (Δλ1 < 500 nm, Δλ2 = 500–725 nm, and Δλ3 > 725 nm) with the use of dichroic filters and is then converted into electric energy by the photoelectric converters based on single-junction InGaN/GaN and GaAs/AlGaAs heterostructures and monocrystalline c-Si silicon. Special attention is paid to the study regarding the possibility of expanding the spectral absorption range of the system by increasing the conversion efficiency in the ultraviolet part of the spectrum. The overall efficiency of the system in the entire spectrum varies from 21 to 37%, depending on the heterostructure design of the single-junction photoelectric converters and the configuration of the optical systems.

Keywords

solar cell spectral splitting gallium nitride gallium arsenide photoelectric converter Fresnel lens dichroic filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guter, W.W., Schone, J., Philipps, S.P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E., Bett, A.W., and Dimroth, F., Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight, Appl. Phys. Lett., 2009, vol. 94, no. 22, p. 223504.CrossRefGoogle Scholar
  2. 2.
    Law, D.C., King, R.R., Yoon, H., Archer, M.J., Boca, A., Fetzer, C.M., Mesropian, D., Isshiki, T., Haddad, M., Edmondson, K.M., Bhusari, D., Yen, J., Sherif, R.A., Atwater, H.A., and Karam, N.H., Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems, Sol. Energy Mater. Sol. Cells, 2010, vol. 94, no. 8, pp. 1314–1318.CrossRefGoogle Scholar
  3. 3.
    Newman, F.D., Aiken, D.J., Patel, P.M., Chumney, D.R., Aeby, I., Hoffman, R.W., and Sharps, P.R., Optimization of inverted metamorphic multijunction solar cells for field-deployed concentrating PV systems, Proc. 34th IEEE Photovoltaic Specialists Conf., Philadelphia, 2009, pp. 001611–001616.Google Scholar
  4. 4.
    Lantratov, V.M., Kalyuzhnyi, N.A., Mintairov, S.A., Timoshina, N.Kh., Shvarts, M.Z., and Andreev, V.M., High-efficiency dual-junction GaInP/GaAs tandem solar cells obtained by the method of MOCVD, Semiconductors, 2007, vol. 41, no. 6, pp. 727–731.CrossRefGoogle Scholar
  5. 5.
    Fraas, L., Avery, J., Huang, H., Minkin, L., and Shifman, E., Demonstration of a 33% efficient Cassegrainian solar module, Proc. 4th IEEE World Conf. on Photovoltaic Energy Conversion, Waikoloa, Hawaii, 2006, pp. 679–682.Google Scholar
  6. 6.
    Barnett, A., Kirkpatrick, D., Honsberg, C., Moore, D., Wanlass, M., Emery, K., Schwartz, R., Carlson, D., Bowden, S., Aiken, D., Gray, A., Kurtz, S., Kazmerski, L., Steiner, M., Gray, J., Davenport, T., Buelow, R., Takacs, L., Shatz, N., Bortz, J., Jani, O., Goossen, K., Kiamilev, F., Doolittle, A., Ferguson, I., Unger, B., Schmidt, G., Christensen, E., and Salzman, D., Very high efficiency solar cell modules, Prog. Photovoltaics: Res. Appl., 2009, vol. 17, no. 1, pp. 75–83.CrossRefGoogle Scholar
  7. 7.
    Groβ, B., Peharz, G., Siefer, G., Peters, M., Goldschmidt, J.S., Steiner, M., Guter, W., Klinger, V., George, B., and Dimroth, F., Highly efficient light splitting photovoltaic receiver, Proc. 24th Europ. Photovoltaic Solar Energy Conf, Hamburg, 2009, pp. 130–134.Google Scholar
  8. 8.
    Wang, X., Waite, N., Murcia, P., Emery, K., Steiner, M., Kiamilev, F., Goossen, K., Honsberg, C., and Barnett, A., Outdoor measurements for high efficiency solar cell assemblies, Proc. 24th Europ. Photovoltaic Solar Energy Conf, Hamburg, 2009, pp. 811–818.Google Scholar
  9. 9.
    Khvostikov, V.P., Vlasov, A.S., Sorokina, S.V., Potapovich, N.S., Timoshina, N.Kh., Shvarts, M.Z., and Andreev, V.M., High-efficiency (η = 39.6%, AM 1.5D) cascade of photoconverters in solar splitting systems, Semiconductors, 2011, vol. 45, no. 6, pp. 792–797.CrossRefGoogle Scholar
  10. 10.
    Barnett, A., Wang, X., Waite, N., Murcia, P., Honsberg, C., Kirkpatrick, D., Laubacher, D., Kiamilev, F., Goossen, K., Wanlass, M., Steiner, M., Schwartz, R., Gray, J., Gray, A., Sharps, P., Emery, K., and Kazmerski, L., Initial test bed for Very High Efficiency Solar Cell, Proc. 33rd IEEE Photovoltaic Specialists Conf., San Diego, 2008, p. 1563.Google Scholar
  11. 11.
    Khvostikov, V.P., Sorokina, S.V., Potapovich, N.S., Vasil’ev, V.I., Vlasov, A.S., Shvarts, M.Z., Timoshina, N.Kh., and Andreev, V.M., Single-junction solar cells for spectrum splitting PV system, Proc. 25th Europ. Photovoltaic Solar Energy Conf. and Exhibition, Valencia, 2010, pp. 167–171.Google Scholar
  12. 12.
    Brown, G.F., Ager, J.W., Walukiewicz, W., and Wu, J., Finite element simulations of compositionally graded InGaN solar cells, Sol. Energy Mater. Sol. Cells, 2010, vol. 94, no. 3, pp. 478–483.CrossRefGoogle Scholar
  13. 13.
    Shen, X., Lin, S., Li, F., Wei, Y., Zhong, S., Wan, H., and Li, J., Simulation of the InGaN-based tandem solar cells, in Photovoltaic Cell and Module Technologies II, Proceedings of SPIE, vol. 7045, von Roedern, B. and Delahoy, A.E., Eds., Bellingham: SPIE, 2008, p. 70450E.CrossRefGoogle Scholar
  14. 14.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. Yu. Kurin
    • 1
  • V. D. Doronin
    • 2
  • A. A. Antipov
    • 1
  • B. P. Papchenko
    • 3
  • H. Helava
    • 4
  • M. I. Voronova
    • 5
  • A. S. Usikov
    • 1
  • Yu. N. Makarov
    • 1
    • 4
  • K. B. Eidel’man
    • 5
  1. 1.GaN-Crystals Ltd.St. PetersburgRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.National Research University ITMOSt. PetersburgRussia
  4. 4.Nitride Crystals Inc.Deer Park, New YorkUSA
  5. 5.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations