Advertisement

Russian Microelectronics

, Volume 42, Issue 8, pp 488–491 | Cite as

Mechanisms of electroconductivity in silicon-carbon nanocomposites with nanosized tungsten inclusions within a temperature range of 20-200°C

  • I. M. Anfimov
  • S. P. Kobeleva
  • M. D. Malinkovich
  • I. V. Shchemerov
  • O. V. Toporova
  • Yu. N. Parkhomenko
Article
  • 33 Downloads

Abstract

The temperature dependences of the specific electroconductivity of silicon-carbon films with nanosized tungsten inclusions were studied. The electroconductivity of specimens within a temperature range of 20–200°C was measured by the contact method. The electroconductivity of films with a room-temperature specific electroconductivity of 0.03-15 Ω cm was shown to grow with increasing temperature and have two componentsthermoactivation and constant, presumably, of a tunnel character. The contribution of the tunnel component grew from 40 to 80% with an increase in the tungsten concentration in a film and a simultaneous decrease in the activation energy from 0.1 to 0.06 eV.

Keywords

silicon-carbon films specific electroconductivity nanocomposites activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles, B., Sheng, P., Coutts, M.D., and Arie, Y., Structural and electrical properties of granular metal films, Adv. Phys., 1975, vol. 24, no. 3, pp. 407–461.CrossRefGoogle Scholar
  2. 2.
    Gantmakher, V.F., Elektrony v neuporyadochennykh sredakh (Electrons in Unordered Media), Moscow: Fizmatlit, 2005.Google Scholar
  3. 3.
    Parkhomenko, Yu.N., Malinkovich, M.D., Skryleva, E.A., and Shupegin, M.L., Manufacturing technology, structure, and properties of metal-containing nanocomposites with a silicon-carbon matrix, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2005, no. 3, pp. 12–16.Google Scholar
  4. 4.
    Malinkovich, M.D., Parkhomenko, Yu.N., Polyakov, D.S., and Shupegin, M.L., Surface structure of nanocomposites based on silicon-carbon matrix revealed by scanning probe microscopy, Rus. Microelectron., 2011, vol. 40, no. 8, pp. 591–594.CrossRefGoogle Scholar
  5. 5.
    Kanaeva, E.S., Malinkovich, M.D., Parkhomenko, Yu.N., and Shupegin, M.L., Studying the surface of silicon-carbon films with nanosized chromium and tantalum based inclusions by scanning probe microscopy, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2011, no. 3, pp. 45–47.Google Scholar
  6. 6.
    Bozhko, A.D., Kataeva, E.A., Takagi, T., Mikheev, M.G., and Guseva, M.B., Electron transport in amorphous metal-carbon nanocomposite films, Moscow Univ. Phys. Bull., 2007, vol. 62, no. 4, pp. 229–232.CrossRefGoogle Scholar
  7. 7.
    Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Oxford: Oxford Univ. Press, 1971.Google Scholar
  8. 8.
    Bublik, V.T., Malinkovich, M.D., Parkhomenko, Yu.N., Tabachkova, N.Yu., and Shupegin, M.L., Structure of nanocomposites with a silicon-carbon matrix and a metal based nanophase, in Trudy XXII Ross. Konf. Elektron. Mikroskop. (Proc. XXII Rus. Conf. on Electron Microscopy), Chernogolovka, 2008, p. 94.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. M. Anfimov
    • 1
  • S. P. Kobeleva
    • 1
  • M. D. Malinkovich
    • 1
  • I. V. Shchemerov
    • 1
  • O. V. Toporova
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.Moscow Institute of Steel and AlloysNational University of Science and TechnologyMoscowRussia

Personalised recommendations