Russian Microelectronics

, Volume 42, Issue 2, pp 102–112 | Cite as

A model of a metallic quantum nanotransistor with a Coulomb-blockage gate in “magic” Au55 and Ag55 nanocrystals with speed of 1011 Hz

Article

Abstract

A model of a parallel metallic quantum nanotransistor with a Coulomb-blockage gate in “magic” nanocrystals Au55 and Ag55 with the speed of 1011 Hz having sizes of 100 × 100 × 12 nm3 is suggested and calculated. It is shown that the gate-opening threshold for this model with the source-drain potential of 2.74 V is 0.2 V, and the total current of 2500 elementary single-electron nanotransistors connected in parallel is 2 × 10−5 A, which is comparable with a current in terahertz semiconductor nanotransistors. It is shown that the charge amplification coefficient is Kq ∼ 1, while the power amplification coefficient is Kw ∼ 13. When using the inductive-capacitive load, a similar nanotransistor could be an element of an integrated circuit—radiation generator with wavelength λ = 3–6 mm and specific power of ∼104 W/cm2 with efficiency of ∼85–90%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhukov, V.A. and Maslov, V.G., I-V Characteristics and Spectrum Width during Electron Tunneling through Nanosandwiches W-WO2-(Au147)-Al2O3-Al and Nd-Nd2O3-(Au55)-Nd2O3-Nd, Part I, Russ. Microelectron., 2012, vol. 41, no. 2 pp. 122–131; Part II, Russ. Microelectron., 2012, vol. 42, no. 3, pp. 172–180.CrossRefGoogle Scholar
  2. 2.
    Averin, D.V. and Likharev, K.K., Mesoscopic Phenomena in Solids, Altshuler, B.L., Lee, P.A., and Webb, R.A., Eds., Amsterdam: Elsevier, 1991.Google Scholar
  3. 3.
    Likharev, K.K., Single Electron Devices and Their Applications, Proc. IEEE, 1999, vol. 87, no. 4, pp. 606–632.CrossRefGoogle Scholar
  4. 4.
    V’yurkov, V.V., Lukichev, V.F., Orlikovskii, A.A., Semenikhin, I.A., and Khomyakov, A.N., Kvantovoe modelirovanie kremnievykh polevykh nanotranzistorov (Quantum Simulation of Silicon Field-Effect Nanotransistors), Moscow: Nauka, Trudy FTIAN, 2008, vol. 19 [in Russian].Google Scholar
  5. 5.
    Wilcoxon, J.P. and Abram, B.L., Synthesis, Structure and Properties of Metal Nanoclusters, Chem. Soc. Rev., 2006, vol. 35, pp. 1162–1194.CrossRefGoogle Scholar
  6. 6.
    Petta Jason, R., Salinas, D.G., and Ralph, D.C., Measurements of Discrete Electronic States in a Gold Nano Particle Using Tunnel Junctions Formed from Self Assembled Monolayers, Appl. Phys. Lett., 2000, vol. 77, no. 26, pp. 4419–4421.CrossRefGoogle Scholar
  7. 7.
    Liu, Sh., Maoz, R., Schmid, G., and Sagiv, J., Template Guided Self-Assembly of [Au55]_Clusters on Nanolithographically Defined Monolayer Patterns, Nano Lett., 2002, vol. 2, no. 10, pp. 1055–158.CrossRefGoogle Scholar
  8. 8.
    Schmid, G. and Simon, U., Gold Nanoparticles: Assembly and Electrical Properties in 1–3 Dimensions, Chem. Commun., 2005, pp. 697–710.Google Scholar
  9. 9.
  10. 10.
    Washburn, S. and Webb, R.A., Aharonov-Bohm Effect in Normal Metal. Quantum Coherence and Transport, Adv. Phys., 1986, vol. 35, no. 4, pp. 375–422.CrossRefGoogle Scholar
  11. 11.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, pp. 1347–1363.CrossRefGoogle Scholar
  12. 12.
    Hay, P.J. and Wadt, W.R., Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals, J. Chem. Phys., 1985, vol. 82, pp. 299–310.CrossRefGoogle Scholar
  13. 13.
    Kendall, R.A., Aprà, E., Bernholdt, D.E., Bylaska, E.J., Dupuis, M., Fann, G.I., Harrison, R.J., Ju, J., Nichols, J.A., Nieplocha, J., Straatsma, T.P., Windus, T.L., and Wong, A.T., High Performance Computational Chemistry: An Overview of NWChem a Distributed Parallel Application, Comput. Phys. Comm., 2000, vol. 128, pp. 260–283.CrossRefMATHGoogle Scholar
  14. 14.
    Huzinaga, S., Andzelm, J., Klobukowski, M., Radzio-Andzelm, E., Sakai, Y., and Tatewaki, H., Gaussian Basis Sets for Molecular Calculations, Amsterdam: Elsevier 1984.Google Scholar
  15. 15.
  16. 16.
    Kittel, C., Elementary Solid State Physics, New York-London: Wiley, 1962.Google Scholar
  17. 17.
    Tunneling Phenomena in Solids, Burstein, E. Lundqvist, S., Eds., New York: Plenum, 1969.Google Scholar
  18. 18.
    Feynman, R.P., Leighton, R.B., and Sands, M., The Feynman Lectures on Physics, vol. 2, London; Addison-Wesly, 1964.Google Scholar
  19. 19.
    Terletskii, Ya.P. and Rybakov, Yu.P., Elektrodinamika (Electrodynamics), Moscow: Vysshaya shkola, 1980.Google Scholar
  20. 20.
    Imry, Y., Introduction to Mesoscopic Physics, New York-Oxford: Oxford Univ., 1997.Google Scholar
  21. 21.
    Torres, J.A., Pascual, J.I., and Saenz, J.J., Theory of Conduction through Narrow Constriction in a Three-Dimensional Electron Gas, Phys. Rev. B, 1994, vol. 49, no. 23, pp. 16581–584.CrossRefGoogle Scholar
  22. 22.
    Francois, B., Bases de l’Electronique Quantique, vol. 2, Paris: Eyrolles, 1969.Google Scholar
  23. 23.
    Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, Sh., Katsnelson, M.I., Cheng, H.-M., Strupinski, W., Blusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., and Geim, A.K., Fluorographene: A Two-Dimensional Counterpart of Teflon, weww.small-journal.com 2010, vol. 6, no. 24, pp. 2877–2884.Google Scholar
  24. 24.
    Virk, N., Montarani, B., and Harrison, N.M., Ab-initio Investigation of Graphane, NSTI-Nanotech., 2010, vol. 1, pp. 296–299, www.nsti.org Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg Institute of Information Science and AutomationRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations