Advertisement

Russian Microelectronics

, Volume 41, Issue 8, pp 459–463 | Cite as

Propagation of polarization of ferroelectric grains in electrically isolated lithium niobate films

  • R. N. Zhukov
  • D. A. Kiselev
  • M. D. Malinkovich
  • Yu. N. Parkhomenko
  • E. A. Vygovskaya
  • O. V. Toropova
Article

Abstract

Piezoresponse force microscopy has been applied for the study of ferroelectric properties of lithium niobate thin films. The films have been obtained on a silicon surface {110}, coated with a thin layer of SiO2 using high-frequency magnetron spraying of lithium niobate. It has been demonstrated that after polarization of a sample surface segment with positive or negative potential using a conductive probe of an atomic force microscope the effect of propagation (spreading) of the region of grain polarized state with a decrease in the piezoresponse amplitude is observed. Moreover, the polarization occurs stepwise, that is, the Barkhausen effect takes place at the nanometer level.

Keywords

Lithium Niobate Ferroelectric Property RUSSIAN Microelectronics Ferroelectric Polarization Piezoresponse Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohlstedt, H. and Ishiwara, H., Nanoelectronics and Information Technology: Advanced Electronic Material and Novel Devices, Weinheim: Wiley-VCH, 2002.Google Scholar
  2. 2.
    Lee, T.-H., Hwang, F.-T., Lee, C.-T., and Lee, H.-Y., Investigation of LiNbO3 Thin Films Grown on Si Substrate Using Magnetron Sputter, Mater. Sci. Eng. B, 2007, vol. 136, p. 92.CrossRefGoogle Scholar
  3. 3.
    Gautier, B. and Bornand, V., Nanoscale Observation of the Distribution of the Polarization Orientation of Ferroelectric Domains in Lithium Niobate Thin Films, Thin Solid Films, 2006, vol. 515, p. 1592.CrossRefGoogle Scholar
  4. 4.
    Ievlev, V.M., Kostyuchenko, A.V., Belonogov, E.K., Sumets, M.P., Vakhtel’, V.M., Sidorov, N.V., and Palatnikov, M.N., Structure and Properties of LiNbO3 Films Obtained by High-Frequency Magnetron Spraying, Perspektivnye Materialy, 2010, no. 3, p. 26.Google Scholar
  5. 5.
    Kiselev, D.A., Kholkin, A.L., Bogomolov, A.A., Sergeeva, O.N., Kaptelov, E.Yu., and Pronin, I.P., Piezoelectric Hysteresis Loops of Unipolar Thin Films of Lead Zirconate-Titanate, Pis’ma Zh. Tekh. Fiz., 2008, vol. 34, p. 28.Google Scholar
  6. 6.
    Bornand, V., Gautier, B., and Papet, Ph., Growth and Nanoscale Ferroelectric Investigation of Radiofrequency-Sputtered LiNbO3 Thin Films, Mater. Chem. Phys., 2004, vol. 86, p. 340.CrossRefGoogle Scholar
  7. 7.
    Kalinin, S.V., Morozovska, A.N., Chen, L.Q., and Rodriguez, B.J., Local Polarization Dynamics in Ferroelectric Materials, Rep. Prog. Phys., 2010, vol. 73, p. 056502.CrossRefGoogle Scholar
  8. 8.
    Shur, V.Ya. Kozhevnikov, V.L., Pelegov, D.V., Nikolaeva, E.V., and Shishkin, E.I., Barkhausen Drops within Motion of Single Ferroelectric Domain Wall, Fiz. Tverd. Tela, 2001, vol. 43, p. 1089.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • R. N. Zhukov
    • 1
  • D. A. Kiselev
    • 1
  • M. D. Malinkovich
    • 1
  • Yu. N. Parkhomenko
    • 1
  • E. A. Vygovskaya
    • 1
  • O. V. Toropova
    • 1
  1. 1.National University of Science and Technology MISISMoscowRussia

Personalised recommendations