Russian Microelectronics

, Volume 41, Issue 2, pp 122–131 | Cite as

I–V characteristics and the spectrum width during electron tunneling through nanosandwiches W-WO2-(Au 147 )-Al2O3-Al and Nd-Nd2O3-(Au 55 )-Nd2O3-Nd. Part I: Quantum-chemical calculation of energies of orbitals for anions of nanoclusters Au55 and Au147

  • V. A. Zhukov
  • V. G. Maslov


This work is devoted to the investigation of electron tunneling through “magical” nanoclusters Au55 and Au147. Using the quantum-chemical calculation, it is shown that the energy of the highest occupied molecular orbital (HOMO) level is \({E_{HOMOAu5{5^ - }}} = - 3.2eV\) and E HOMOAu147 = −4.4 eV, respectively. It is established that the difference between energy E LUMO of the lowest unoccupied level LUMO and energy E LUMO for the anions of clusters (Au 55 and Au 147 ) is 0.86 and 0.24 eV, respectively. Based on the results of the calculations, it is assumed that nanosandwiches W-WO2-(Au 147 )-Al2O3-Al can be promising structures for implementation of metal nanodiodes based on them, while nanosandwiches Nd-Nd2O3-(Au 55 )-Nd2O3-Nd can be promising for implementation of energy filters not producing hot electrons and allowing the fabrication of the ring Aharonov-Bohm interferometers based on normal metals at liquid-helium temperatures.


Quantum Chemical Calculation High Occupied Molec Ular Orbital RUSSIAN Microelectronics Electron Tunneling Atomic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averin, D.V. and Likharev, K.K., Mesoscopic Phenomena in Solids, Altshuler, B.L., Lee, P.A., and Webb, R.A., Eds., Amsterdam: Elsevier, 1991.Google Scholar
  2. 2.
    Likharev, K.K., Single Electron Devices and Their Applications, Proc. IEEE, 1999, vol. 87, no. 4, pp. 606–632.CrossRefGoogle Scholar
  3. 3.
    Kastner, M.A., The Single Electron Transistor and Artificial Atoms, Ann. Phys. (Leipzig), 2000, vol. 9, nos. 11–12, pp. 885–894.Google Scholar
  4. 4.
    Matsumoto, K., Ishii, M., Segawa, K., and Oka, Y., Room Temperature Operation of a Single Electron Transistor Made by the Scanning Tunneling Microscope Nanooxidation Process for the TiOx/Ti System, Appl. Phys. Lett., 1996, vol. 68, no. 1, pp. 34–36.CrossRefGoogle Scholar
  5. 5.
    Chang, T.H., Chen, K.A., and Yang, C.H., Fabrication Technique for Nanometer-Scale InAs Quantum Devices: Observation of Quantum Interference in Aharonov-Bohm Rings and Coulomb Blockade in Quantum Dots, J. Vac. Technol. B, 2000, vol. 18, no. 6, pp. 3493–3496.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Liu, X., Wang, A., Yang, X., Zhang, T., Mou, C.-Y., Su, D.-S, and Li, J., Synthesis of Thermally Stable and Highly Active Bimetallic Au-Ag Nanoparticles on Inert Supports, Chem. Mater., 2009, vol. 21, pp. 410–418.CrossRefGoogle Scholar
  7. 7.
    Torsten, H., Charging Effects in Niobium Nanostructures, arXiv:cond-mat/9901308v1 [cond-mat.mes-hall], 1999, 27 Jan.Google Scholar
  8. 8.
    Pogosov, V.V. and Kurbatskyab, V.P., Density-Functional Theory of Elastically Deformed Finite Metallic System: Work Function and Surface Stress, JETP, 2001, vol. 92, no. 2, pp. 304–311.CrossRefGoogle Scholar
  9. 9.
    Petta, J.R., Salinas, D.G., and Ralph, D.C., Measurements of Discrete Electronic States in a Gold Nanoparticle Using Tunnel Junction Formed from Self Assembled Mono Layers, Appl. Phys. Lett., 2000, vol. 77, no. 26, pp. 4419–4421.CrossRefGoogle Scholar
  10. 10.
    Rao, C.N., Kulkarni, G.U., Govindaraj, A., Satishkumar, B.C., and Thomas, P.J., Metal Nanoparticles, Nanowires and Carbon Nanotubes, Pure Appl. Chem., 2000, vol. 72, nos. 1–2, pp. 21–33.CrossRefGoogle Scholar
  11. 11.
    Lee, J.-S., Recent Progress in Gold Nanoparticle-Based Non-Volatile Memory Devices, Gold Bulletin, 2010, vol. 43, no. 3, pp. 189–199.CrossRefGoogle Scholar
  12. 12.
    Sih, B.C. and Wolf, M.O., Metal Nanoparticle-Conjugated Polymer Nanocomposites, Chem. Commun., 2005, pp. 3375–3384.Google Scholar
  13. 13.
    Kolliopoulou, S., Tsoukalas, D., Dimitrakis, P., Normand, P., Paul, S., Pearson, C., Molloy, A., and Petty, M.C., Field Effect Devices with Metal Nanoparticles Integrated by Langmuir-Blodgett Technique for Non-Volatile Memory Applications, J. Phys.: Conf. Ser., 2005, vol. 10, pp. 57–60.CrossRefGoogle Scholar
  14. 14.
    Daniel, M.-C. and Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev., 2004, vol. 104, pp. 293–346.CrossRefGoogle Scholar
  15. 15.
    Kurdak, C., Kim, J., Farina, L.A., Lewis, K.M., Bai, X., Rowe, M.P., and Matzger, A.J., Au Nanoparticle Clusters: A New System to Model Hopping Conduction, Turk. J. Phys., 2003, vol. 27, pp. 419–426.Google Scholar
  16. 16.
    Clarkey, L., Wybournez, M.N., Brownx, L.O., Hutchisonx, J.E., Yanx, M., Caix, S.X., and Keanax, J.F.W., Room-Temperature Coulomb-Blockade-Dominated Transport in Gold Nanocluster Structures, Semicond. Sci. Technol. (Printed in the UK), 1998, vol. 13, pp. A111–A114.CrossRefGoogle Scholar
  17. 17.
    Pogosov, V.V., Vasyutin, E.V., and Babich, A.V., Effect of Electron Overheating on the Tunneling Current of a Molecular Transistor, Techn. Phys. Lett., 2007, vol. 33, no. 9, pp. 719–722.CrossRefGoogle Scholar
  18. 18.
    Babich, A.V. and Pogosov, V.V., Effects of Electron Levels Broadening and Electron Temperature in Tunnel Structures Based on Metal Nanoclusters, Surf. Sci., 2010, vol. 604, pp. 210–216.CrossRefGoogle Scholar
  19. 20.
    Pogosov, V.V., Vasyutin, E.V., Kurbatskii, V.P., Babich, A.V., and Korotun, A.V., Single-Electron Effects in Dot Structures, Nanosyst. Nanomater. Nanotechn., 2007, vol. 5, no. 1, pp. 39–74.Google Scholar
  20. 21.
    Wilcoxon, J.P. and Abram, B.L., Synthesis, Structure and Properties of Metal Nanoclusters, Chem. Soc. Rev., 2006, vol. 35, p. 1162–1194.CrossRefGoogle Scholar
  21. 22.
    McGuigan, M. and Davenport, J.W., Computational Exploration of the Nanogold Energy Landscape, arXiv:0912.5316vl [cond.-mat. mes.-hall] 29 Dec. 2009, pp. 1–15.Google Scholar
  22. 23.
    Schmid, G. and Simon, U., Gold Nanoparticles: Assembly and Electrical Properties in 1–3 Dimensions, Chem. Commun., 2005, pp. 697–710.Google Scholar
  23. 24.
    Hakkinen, H. and Moseler, M., Symmetry and Electronic Structure of Noble Metal Nanoparticles and the Role of Relativity, arXiv:cond-mat/0404184vl [condmat.other] 7 Apr. 2004, pp. 1–10.Google Scholar
  24. 25.
    Guliamov, O., Frenkel, A.I., Menard, L.D., Nuzzo, R.G., and Kronik, L., Tangential Ligand-Induced Strain in Icosahedral Au13, J. Am. Chem. Soc., 2007, vol. 129, pp. 10978–10979.CrossRefGoogle Scholar
  25. 26.
    Tran, N.T, Kawano, M., and Dahl, L.F., High-Nuclearity Palladium Carbonyl Trimethylphosphine Clusters Containing Unprecedented Face-Condensed Icosahedral-Based Transition-Metal Core Geometries: Proposed Growth Patterns from a Centered Pd13 Icosahedron, J. Chem. Soc., Dalton Trans., 2001, pp. 2731–2748.Google Scholar
  26. 27.
    Schmid, G. Metals, Chapter 2, in Nanoscale Materials in Chemistry, Klabunde, K.J., Ed., New York: Wiley, 2001.Google Scholar
  27. 28.
    Mahladisa, M.A., Ackermann, L., and Ngoepe, P.E., Structural Properties of Gold Clusters at Different Temperatures, South African J. Sci., 2005, vol. 101, Sept./Oct., pp. 471–474.Google Scholar
  28. 29.
    Garzón, I.L., Michaelian, K., Beltrán, M.R., Posada-Amarillas, A., Ordejón, P., Artacho, E., Sánchez-Portal, D., and Soler, J.M., Lowest Energy Structures of Gold Nanoclusters, Phys. Rev. Lett., 1998, vol. 81, no. 8, pp. 1600–1603.CrossRefGoogle Scholar
  29. 30.
    Liu, S., Maoz, R., Schmid, G., and Sagiv, J., Template Guided Self-Assembly of [Au55] Clusters on Nanolitographically Defined Monolayer Patterns, Nano Lett., 2002, vol. 2, no. 10, pp. 1055–1058.CrossRefGoogle Scholar
  30. 31.
    Washburn, S. and Webb, R.A., Aharonov-Bohm Effect in Normal Metal. Quantum Coherence and Transport, Adv. Phys., 1986, vol. 35, no. 4, pp. 375–422.CrossRefGoogle Scholar
  31. 32.
    Cowly, J.M., Diffraction Physics, 3rd edition,, 1995.Google Scholar
  32. 33.
    Tunneling Phenomena in Solids, Burstein, E. and Lundqvist, S., Eds., New York: Plenum, 1969.Google Scholar
  33. 34.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, pp. 1347–1363.CrossRefGoogle Scholar
  34. 35.
    Hay, P.J. and Wadt, W.R., Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals, J. Chem. Phys., 1985, vol. 82, pp. 299–310.CrossRefGoogle Scholar
  35. 36.
    Fizicheskaya entsiklopediya (Physical Encyclopedia), Moscow: Sovetskaya entsiklopediya, 1990.Google Scholar
  36. 37.
    Kubo, R., Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn., 1957, vol. 12, no. 6, pp. 570–586.MathSciNetCrossRefGoogle Scholar
  37. 38.
    Kittel, C., Elementary Solid State Physics, New York-London: Wiley, 1962.Google Scholar
  38. 39.
  39. 40.
    Bogachek, E.N., Scherbakov, A.G., and Landman, U., Shape Effects on Conductance Quantization in Three-Dimensional Nanowires: Hard Versus Soft Potentials, Phys. Rev. B, 1997, vol. 56, no. 3, pp. 1065–1068.CrossRefGoogle Scholar
  40. 41.
    Rupp, E., über Beugung Langsamer Elektronen an Wolframeinkristallen, Ann. d. Phys., 1932, vol. 5, no. 13, p. 103.Google Scholar
  41. 42.
    Halas, S. and Durakiewicz, T., Work Functions of Elements Expressed in Terms of the Fermi Energy and the Density of Free Electrons, J. Phys.: Condens. Matter., 1998, vol. 10, no. 48, p. 10815.CrossRefGoogle Scholar
  42. 43.
    Petta, J.R., Salinas, D.G., and Ralph, D.C., Measurements of Discrete Electronic States in a Gold Nanoparticle Using Tunnel Junction Formed from Self Assembled Mono Layers, Appl. Phys. Lett., 2000, vol. 77, no. 26, pp. 4419–4421.CrossRefGoogle Scholar
  43. 44.
    Huzinaga, S., Andzelm, J., Klobukowski, M., Radzio-Andzelm, E., Sakai, Y., and Tatewaki, H., Gaussian Basis Sets for Molecular Calculations, Amsterdam: Elsevier, 1984.Google Scholar
  44. 45.
    Kendall, R.A., Aprà, E., Bernholdt, D.E., Bylaska, E.J., Dupuis, M., Fann, G.I., Harrison, R.J., Ju, J., Nichols, J.A., Nieplocha, J., Straatsma, T.P., Windus, T.L., and Wong, A.T., High Performance Computational Chemistry: An Overview of NWChem a Distributed Parallel Application, Comp. Phys. Commun., 2000, vol. 128, pp. 260–283.zbMATHCrossRefGoogle Scholar
  45. 46.

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.St. Petersburg Institute of Information Science and AutomationRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations