Advertisement

Russian Microelectronics

, Volume 39, Issue 3, pp 199–209 | Cite as

Low temperature pulsed gas-phase deposition of thin layers of metallic ruthenium for micro- and nanoelectronics: Part 2. Kinetics of the growth of ruthenium layers

  • V. Yu. Vasilyev
Thin Films

Abstract

Experimental data of growth kinetics of layers of ruthenium in a temperature range of 110–350°C by pulsed deposition from the gas phase with the participation of the carbonyl-diene precursor complex Ru(CO)3(C6H8), as well as NH3 and N2O as the second reagent are generalized.

Keywords

Ruthenium Deposition Rate Atomic Layer Deposition RUSSIAN Microelectronics Tricarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasilyev, V.Yu., Nizkotemperaturnoe impul’snoe gazofaznoe osazhdenie tonkikh sloev metallicheskogo ruteniya dlya mikroi nanoelektroniki. Chast’ 1. Oborudovanie i metodologiya impul’snogo osazhdeniya. — (in press).Google Scholar
  2. 2.
    Ritala, M. and Leskela, M., in Handbook of Thin Film Materials // Nalwa H.S. Ed., San Diego: Academic Press, 2001, vol. 1, pp. 103.Google Scholar
  3. 3.
    Uhlenbrosk, S. and Vaartstra, V.A., Methods for preraring ruthenium and osmium somrounds, USA Patent, no. 6576778.Google Scholar
  4. 4.
    Marsh, E. and Uhlenbrosk, S., Method of forming ruthenium and ruthenium oxide films on a semisondustor strusture, USA Patent, no. 6844261.Google Scholar
  5. 5.
    Chung, S., Lee, Y.M., Lee, K.D., Song, Y.W., and Jang, H.K., Atomic Layer Deposition of Ruthenium Using Ru(CO)3(C6H8) Precursor, Proc., 2006, pp. 259–260.Google Scholar
  6. 6.
    Vasilyev, V.Yu., Chung, S.H., and Song, Y.W., Ruthenium Film Growth from Ru(CO) 3 (C 6 H 8) at Low Temperatures in Sequentially Pulsed Deposition Mode // Proc. 7th ECS Int. Semiconductor Techn. Conf. (ISTC), Shanghai: China. Electrochem. Soc. Proc. Vol. PV, 2008-01, pp. 667–673.Google Scholar
  7. 7.
    Vasilyev, V.Yu., Mogilnikov, K.P., and Song, Y.W., Ruthenium Thin Film Nucleation and Growth from Tricarbonyl[4-Cyclohexa-1,3-Diene]Ruthenium at Pulsed Chemical Vapor Deposition Conditions, J. Electrochem. Soc., 2008, vol. 155, no. 12, pp. D763–D770.CrossRefGoogle Scholar
  8. 8.
    Chung, S.-H., Vasilyev, V.Yu., Gorokhov, E., Song, Y.W., and Jang, H.-K., Electrical and Structural Properties of Ruthenium Film Grown by Atomic Layer Deposition Using Liquid-Phase Ru(CO)3(C6H8) Precursor, Mater. Res. Soc. Symp. Proc., 2007, vol. 990, paper no. 0990-B08-01.Google Scholar
  9. 9.
    Vasilyev, V.Yu., Mogilnikov, K.P., and Song, Y.W., Surface Selective Growth of Ruthenium Films Under Low Temperature Pulsed CVD Conditions, Electrochem. and Solid State Lett, 2008, vol. 11, no. 12, pp. D89–D93.CrossRefGoogle Scholar
  10. 10.
    Lee, J., Song, Y.W., Lee, K., Lee, Y., and Jang, H.K., Atomic Layer Deposition of Ru by Using a New Ru-Precursor, ECS Transactions, 2006, vol. 2, no. 4, pp. 1–11.zbMATHCrossRefGoogle Scholar
  11. 11.
    Lee K.D., Lee Y.M., Chung S., Song Y.W., and Jang H.K. Ruthenium films from Ru(CO)3(C6H8) by Atomic Layer Deposition // Proc. 4th Int. Symp. NANO KOREA 2006. Seoul. Korea. CDROM paper no. PMA038.Google Scholar
  12. 12.
    Vasilyev V.Yu., Chung S.H., Song Y.W. Comparison of Ruthenium films deposited from Ru(CO)3(C6H8) in the presence of ammonia or nitrous oxide at low temperatures // Proc. 5th Int. Symp. NANO KOREA 2007. Seoul. Korea. CDROM paper no. PMA047.Google Scholar
  13. 13.
    Chung S.H., Vasilyev V.Yu., Jung S.T., Park D.B., Jang H.K., Song Y.W. Low temperature Ruthenium film Atomic Layer Deposition from Ru(CO)3(C6H8)and NH3 using consecutive and separated gas pulses // Proc. 5th Int. Symp. NANO KOREA 2007. Seoul. Korea. CDROM paper no. PMA049.Google Scholar
  14. 14.
    Vasilyev V.Yu. and Song Y.W. Ruthenium film surface sensitivity and selectivity growth effects at low temperatures and pulsed chemical vapor deposition conditions // Paper no. OS03 presented at 1st Int. Conf. on Microelectronics and Plasma Technology (ICMAP). Jeju. Korea. 2008. (submitted to Thin Solid Film).Google Scholar
  15. 15.
    Vasilyev, V.Yu. and Repinskii, S.M., Osazhdenie dielektricheskikh sloev iz gazovoi fazy, Usp. Khim., 2005, vol. 74, no. 5, pp. 452–483.Google Scholar
  16. 16.
    Park, K.J., Terry, D.B., Stewart, S.M., and Parsons, G.N., In Situ Auger Electron Spectroscopy Study of Atomic Layer Deposition: Growth Initiation and Interface Formation Reactions During Ruthenium ALD on Si-H, SiO2, and HfO2 Surfaces, Langmuir, 2007, vol. 23, no. 11, pp. 6106–6112.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of semiconductor devices and microelectronics (SDaME)Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations