Russian Microelectronics

, Volume 38, Issue 5, pp 320–326 | Cite as

Methods of parallel integration of carbon nanotubes during the formation of functional devices for microelectronics and sensor technologies

  • I. I. BobrinetskiiEmail author
Production-Process Dynamics


Methods of formation of thin film structures and sensor elements based on carbon nanotubes have been developed. Methods of integration using deposition from solutions, probe micromechanics and the electrokinetic positioning of nanotubes providing compatibility with traditional microelectronic technology, are suggested. Peculiarities of the parallel integration of carbon nanotubes in the process of formation of thin films, networks, and individual conduction channels are revealed.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobrinetskii, I.I., Nevolin, V.K., Stroganov, A.A., and Chaplygin, Yu.A., Modulation of conductance of bundles of single walled carbon nanotubes, Mikroelektronika, 2004, vol. 33, no. 5, pp. 356–361.Google Scholar
  2. 2.
    Bobrinetskii, I.I., Sensor properties of the structures based on carbon nanotubes, Rossiiskie Nanotekhnologii, 2007, vol. 2, no. 5–6, pp. 90–94.Google Scholar
  3. 3.
    Li, W.Z., Xie, S.S., Qian, X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 1996, vol. 274, no. 5293, pp. 1701–1703.CrossRefGoogle Scholar
  4. 4.
    Hsiao, C.H., Weng, C.H., Liu, K.K., Huang, S.Y., Tsai, C.H., and Leou, K.C., Toward the Synthesis of High-Quality Single-Walled Carbon Nanotube at Low Temperatures by Plasma-Enhanced Chemical Vapor Deposition // Ninth Internetional Conference on the Science and Application of Nanotubes. Book of Abstract, Le Corum, Montpellier, France, 2008, p. 498.Google Scholar
  5. 5.
    Dittmer, S., Mudgal, S., Nerushev, O.A., Campbell, E.E.B. Local heating method for growth of aligned carbon nanotubes at low ambient temperature // Fizika Nizkikh Temperatur, 2008, vol. 34, no. 10, pp. 1058–1062.Google Scholar
  6. 6.
    Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., and Yodh, G., High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, 2003, vol. 3, no. 2, pp. 269–273.CrossRefGoogle Scholar
  7. 7.
    Fu, Q. and Liu, J., Effects of Ionic Surfactant Adsorption on Single-Walled Carbon Nanotube Thin Film Devices in Aqueous Solutions. Langmuir, 2005, vol. 21, pp. 1162–1165.CrossRefGoogle Scholar
  8. 8.
    Bobrinetskii, I.I., Stroganov, A.A., Nevolin, V.K., Ivanova, O.M., and Krutovertsev, S.A., Sensitivity of structures based on bundles of carbon nanotubes to measurements of ammonia concentration. Datchiki i Sistemy, 2007, no. 9, pp. 22–27.Google Scholar
  9. 9.
    Nevolin, V.K., Zondovye nanotekhnologii v elektronike. (Probe nanotechnologies for electronics), Moscow: Tekhnosfera, 2006, 2nd ed.Google Scholar
  10. 10.
    Hertel, T., Martel, R., and Avouris, Ph., Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces, J. Phys. Chem., B, 1998, vol. 102, pp. 910–915.CrossRefGoogle Scholar
  11. 11.
    Bobrinetskii, I.I. and Nevolin, V.K., Micromechanics of carbon nanotubes on substrates, Mikrosistemnaya Tekhnika, 2002, no. 4, pp. 20–21.Google Scholar
  12. 12.
    Bobrinetskii, I.I., Nevolin, V.K., Roshchin, V.M., and Snisarenko, E.A., Formation of nanocontacts during local oxidization of titanium films, Mikrosistemnaya Tekhnika, 2001, no. 11, pp. 42–45.Google Scholar
  13. 13.
    Yu, M., Lourie, O., and Dyer, M., Strength Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, vol. 287, pp. 637–640.CrossRefGoogle Scholar
  14. 14.
    Avouris, Ph., Hertel, T., Martel, R., and Schmidt, T., Shea H.R., and Walkup, R.E. Carbon Nanotubes: Nanomechanics, Manipulation, and Electronic Devices, Applied Surface Science, 1999, vol. 141, pp. 201–209.CrossRefGoogle Scholar
  15. 15.
    Roschier, L., Pentilla, J., and Martin, M., Single-Electron Transistor Made of Multiwalled Carbon Nanotube Using Scanning Probe Manipulation, Appl. Phys. Lett., 1999, vol. 75, no. 5, pp. 728–730.CrossRefGoogle Scholar
  16. 16.
    Bobrinetskii, I.I., Nevolin, V.K., Khartov, S.V., and Chaplygin, Yu.A., Modulation of conductance of quasi-one-dimensional molecular microconductors, Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2005, vol. 31, no. 20, pp. 65–69.Google Scholar
  17. 17.
    Yamamoto, K., Akita, S., and Nakayama, Y., Orientation and Purification of Carbon Nanotubes Using AC Electrophoresis, J. Phys., D: Appl. Phys., 1998, vol. 31, pp. L34–L36.CrossRefGoogle Scholar
  18. 18.
    Dukhin, S.S. and Deryagin, B.V., Elektroforez (Electrophoresis), Moscow: Nauka, 1976.Google Scholar
  19. 19.
    Glik, B. and Pasternak, Dzh., Molekulyarnaya biotekhnologiya. Printsipy i primenenie (Molecular Boitechnology: Fundamentals and Applications), Moscow: Mir, 2002.Google Scholar
  20. 20.
    Wang, X-B., Huang, Y., Becker, F.F., and Gascoyne, P.R.C., A Unified Theory or Dielectrophoresis and Traveling Wave Dielectrophoresis, J. Phys., D: Appl. Phys., 2004, vol. 27, pp. 1571–1574.CrossRefGoogle Scholar
  21. 21.
    Monica, A.H., Papadakis, S.J., Osiander, R., and Paranjape, M., Wafer-Level Assembly of Carbon Nanotube Networks Using Dielectrophoresis, Nanotecnology, 2008, vol. 19, pp. 085303–085307.CrossRefGoogle Scholar
  22. 22.
    Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R., Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices, Nano Lett, 2007, vol. 7, no. 6, pp. 1556–1560.CrossRefGoogle Scholar
  23. 23.
    Bobrinetskii, I.I., Nevolin, V.K., Gorshkov, K.V., and Dan’kin, D.A., Using the method of dielectrophoresis for formation of integrated structures based on carbon nanotubes // Nano- i mikrosistemnaya tekhnika, 2009, no. 2, (in press).Google Scholar
  24. 24.
    Wang, Y.M., Han, W.-Q., and Zettl, A., Trapping and Aligning Carbon Nanotubes Via Substrate Geometry Engineering, New Journal of Physics, 2004, vol. 6, pp. 15–18.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow Institute of Electronic Technology (Technical University)MoscowRussia
  2. 2.OOO NanosensorMoscowRussia

Personalised recommendations