Skip to main content
Log in

Methods of parallel integration of carbon nanotubes during the formation of functional devices for microelectronics and sensor technologies

  • Production-Process Dynamics
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Methods of formation of thin film structures and sensor elements based on carbon nanotubes have been developed. Methods of integration using deposition from solutions, probe micromechanics and the electrokinetic positioning of nanotubes providing compatibility with traditional microelectronic technology, are suggested. Peculiarities of the parallel integration of carbon nanotubes in the process of formation of thin films, networks, and individual conduction channels are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobrinetskii, I.I., Nevolin, V.K., Stroganov, A.A., and Chaplygin, Yu.A., Modulation of conductance of bundles of single walled carbon nanotubes, Mikroelektronika, 2004, vol. 33, no. 5, pp. 356–361.

    Google Scholar 

  2. Bobrinetskii, I.I., Sensor properties of the structures based on carbon nanotubes, Rossiiskie Nanotekhnologii, 2007, vol. 2, no. 5–6, pp. 90–94.

    Google Scholar 

  3. Li, W.Z., Xie, S.S., Qian, X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 1996, vol. 274, no. 5293, pp. 1701–1703.

    Article  Google Scholar 

  4. Hsiao, C.H., Weng, C.H., Liu, K.K., Huang, S.Y., Tsai, C.H., and Leou, K.C., Toward the Synthesis of High-Quality Single-Walled Carbon Nanotube at Low Temperatures by Plasma-Enhanced Chemical Vapor Deposition // Ninth Internetional Conference on the Science and Application of Nanotubes. Book of Abstract, Le Corum, Montpellier, France, 2008, p. 498.

    Google Scholar 

  5. Dittmer, S., Mudgal, S., Nerushev, O.A., Campbell, E.E.B. Local heating method for growth of aligned carbon nanotubes at low ambient temperature // Fizika Nizkikh Temperatur, 2008, vol. 34, no. 10, pp. 1058–1062.

    Google Scholar 

  6. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., and Yodh, G., High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, 2003, vol. 3, no. 2, pp. 269–273.

    Article  Google Scholar 

  7. Fu, Q. and Liu, J., Effects of Ionic Surfactant Adsorption on Single-Walled Carbon Nanotube Thin Film Devices in Aqueous Solutions. Langmuir, 2005, vol. 21, pp. 1162–1165.

    Article  Google Scholar 

  8. Bobrinetskii, I.I., Stroganov, A.A., Nevolin, V.K., Ivanova, O.M., and Krutovertsev, S.A., Sensitivity of structures based on bundles of carbon nanotubes to measurements of ammonia concentration. Datchiki i Sistemy, 2007, no. 9, pp. 22–27.

  9. Nevolin, V.K., Zondovye nanotekhnologii v elektronike. (Probe nanotechnologies for electronics), Moscow: Tekhnosfera, 2006, 2nd ed.

    Google Scholar 

  10. Hertel, T., Martel, R., and Avouris, Ph., Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces, J. Phys. Chem., B, 1998, vol. 102, pp. 910–915.

    Article  Google Scholar 

  11. Bobrinetskii, I.I. and Nevolin, V.K., Micromechanics of carbon nanotubes on substrates, Mikrosistemnaya Tekhnika, 2002, no. 4, pp. 20–21.

  12. Bobrinetskii, I.I., Nevolin, V.K., Roshchin, V.M., and Snisarenko, E.A., Formation of nanocontacts during local oxidization of titanium films, Mikrosistemnaya Tekhnika, 2001, no. 11, pp. 42–45.

  13. Yu, M., Lourie, O., and Dyer, M., Strength Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, vol. 287, pp. 637–640.

    Article  Google Scholar 

  14. Avouris, Ph., Hertel, T., Martel, R., and Schmidt, T., Shea H.R., and Walkup, R.E. Carbon Nanotubes: Nanomechanics, Manipulation, and Electronic Devices, Applied Surface Science, 1999, vol. 141, pp. 201–209.

    Article  Google Scholar 

  15. Roschier, L., Pentilla, J., and Martin, M., Single-Electron Transistor Made of Multiwalled Carbon Nanotube Using Scanning Probe Manipulation, Appl. Phys. Lett., 1999, vol. 75, no. 5, pp. 728–730.

    Article  Google Scholar 

  16. Bobrinetskii, I.I., Nevolin, V.K., Khartov, S.V., and Chaplygin, Yu.A., Modulation of conductance of quasi-one-dimensional molecular microconductors, Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2005, vol. 31, no. 20, pp. 65–69.

    Google Scholar 

  17. Yamamoto, K., Akita, S., and Nakayama, Y., Orientation and Purification of Carbon Nanotubes Using AC Electrophoresis, J. Phys., D: Appl. Phys., 1998, vol. 31, pp. L34–L36.

    Article  Google Scholar 

  18. Dukhin, S.S. and Deryagin, B.V., Elektroforez (Electrophoresis), Moscow: Nauka, 1976.

    Google Scholar 

  19. Glik, B. and Pasternak, Dzh., Molekulyarnaya biotekhnologiya. Printsipy i primenenie (Molecular Boitechnology: Fundamentals and Applications), Moscow: Mir, 2002.

    Google Scholar 

  20. Wang, X-B., Huang, Y., Becker, F.F., and Gascoyne, P.R.C., A Unified Theory or Dielectrophoresis and Traveling Wave Dielectrophoresis, J. Phys., D: Appl. Phys., 2004, vol. 27, pp. 1571–1574.

    Article  Google Scholar 

  21. Monica, A.H., Papadakis, S.J., Osiander, R., and Paranjape, M., Wafer-Level Assembly of Carbon Nanotube Networks Using Dielectrophoresis, Nanotecnology, 2008, vol. 19, pp. 085303–085307.

    Article  Google Scholar 

  22. Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R., Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices, Nano Lett, 2007, vol. 7, no. 6, pp. 1556–1560.

    Article  Google Scholar 

  23. Bobrinetskii, I.I., Nevolin, V.K., Gorshkov, K.V., and Dan’kin, D.A., Using the method of dielectrophoresis for formation of integrated structures based on carbon nanotubes // Nano- i mikrosistemnaya tekhnika, 2009, no. 2, (in press).

  24. Wang, Y.M., Han, W.-Q., and Zettl, A., Trapping and Aligning Carbon Nanotubes Via Substrate Geometry Engineering, New Journal of Physics, 2004, vol. 6, pp. 15–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Bobrinetskii.

Additional information

Original Russian Text © I.I. Bobrinetskii, 2009, published in Mikroelektronika, 2009, Vol. 38, No. 5, pp. 353–360.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrinetskii, I.I. Methods of parallel integration of carbon nanotubes during the formation of functional devices for microelectronics and sensor technologies. Russ Microelectron 38, 320–326 (2009). https://doi.org/10.1134/S1063739709050047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739709050047

PACS

Navigation