Advertisement

Russian Journal of Marine Biology

, Volume 45, Issue 5, pp 350–354 | Cite as

Postembryonic Development of the Hydrothermal Vestimentiferan Oasisia alvinae Jones, 1985 (Annelida, Siboglinidae)

  • M. M. GantsevichEmail author
  • N. P. Karaseva
  • N. N. Rimskaya-Korsakova
  • V. V. Malakhov
ORIGINAL PAPERS
  • 18 Downloads

Abstract

Allometric growth in post-embryonic development was studied in the hydrothermal vestimentiferan Oasisia alvinae Jones, 1985. In the process of growth, the length of the trunk region increases relative to the total body length from 51 to 83.4%, whereas the relative sizes of the obturacular region, vestimental region, and the opisthosoma decrease. This is connected with a strong development of the trophosome and gonads in the trunk region. It is suggested that the predominant growth of the trunk region during ontogeny is a common pattern for all vestimentiferans. We discuss the differences in body proportions of vestimentiferans that live in hydrothermal vents and vestimentiferans of cold hydrocarbon seeps.

Keywords:

vestimentiferans allometric growth postembryonic development Oasisia alvinae Vestimentifera Siboglinidae 

Notes

ACKNOWLEDGMENTS

The authors express their sincere thanks to Dr. Biol. Sci. S.V. Galkin, a leading scientist of the Shirshov Institute of Oceanology, Russian Academy of Sciences.

FUNDING

The work was financially supported by the Russian Science Foundation (grant no. 18-14-00141).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare no conflict of interest.

Statement on the welfare of animals. All applicable international, national and/or institutional guidelines for the care and use of animals have been observed.

REFERENCES

  1. 1.
    Karaseva, N.P., Malakhov, V.V., and Galkin, S.V., The morphology and anatomy of the vestimentiferan worm Oasisia alvinae Jones, 1985 (Annelida: Siboglinidae). I. External morphology, obturaculae and tentacles, Russ. J. Mar. Biol., 2011, vol. 37, no. 6, pp. 430–439.CrossRefGoogle Scholar
  2. 2.
    Karaseva, N.P., Rimskaya-Korsakova, N.N., Galkin, S.V., and Malakhov, V.V., Taxonomy, geographical and bathymetric distribution of vestimentiferan tubeworms (Annelida, Siboglinidae), Biol. Bull., 2016, vol. 43, no. 9, pp. 937–969.CrossRefGoogle Scholar
  3. 3.
    Malakhov, V.V. and Galkin, S.V., Vestimentifery – beskishechnye bespozvonochnye morskikh glubin (Vestimentifera: Gutless Invertebrates of Sea Floor), Moscow: KMK, 1998.Google Scholar
  4. 4.
    Malakhov, V.V., Popelyaev, I.S., and Galkin, S.V., Microscopic anatomy of Ridgeia phaeophiale Jones, 1985 (Pogonophora, Vestimentifera) and the problem of the position of Vestimentifera in the system of animal kingdom. I. General anatomy, obturacula, and tentacles, Russ. J. Mar. Biol., 1996, vol. 22, no. 2, pp. 63–74.Google Scholar
  5. 5.
    Andersen, A.C., Jolivet, S., Claudinot, S., and Lallier, F.H., Biometry of the branchial plume in the hydrothermal vent tubeworm Riftia pachyptila (Vestimentifera; Annelida), Can. J. Zool., 2002, vol. 80, pp. 320–332.CrossRefGoogle Scholar
  6. 6.
    Bartolomaeus, T., Structure and formation of the uncini in Pectinaria koreni, Pectinaria auricoma (Terebellida) and Spirorbis spirorbis (Sabellida): implications for annelid phylogeny and the position of the Pogonophora, Zoomorphology, 1995, vol. 115, pp. 161–177.CrossRefGoogle Scholar
  7. 7.
    Boore, J.L. and Brown, W.M., Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa, Mol. Biol. Evol., 2000, vol. 17, no. 1, pp. 87–106.CrossRefGoogle Scholar
  8. 8.
    Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., et al., Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts, Science, 1981, vol. 213, no. 4505, pp. 340–342.CrossRefGoogle Scholar
  9. 9.
    Cavanaugh, C.M., Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats, Nature, 1983, vol. 302, no. 3, pp. 58–61.CrossRefGoogle Scholar
  10. 10.
    Cavanaugh, C.M., McKiness, Z.P., Newton, I.L.G., and Stewart, F.J., Marine chemosynthetic symbioses, in The Prokaryotes, 4th ed., Berlin: Springer-Verlag, 2013, pp. 579–626.Google Scholar
  11. 11.
    Dattagupta, S., Miles, L.L., Barnabei, M.S., and Fisher, C.R., The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply, J. Exp. Biol., 2006, vol. 209, pp. 3795–3805.CrossRefGoogle Scholar
  12. 12.
    Freytag, J.K., Girguis, P.R., Bergquist, D.C., et al., A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 23, pp. 13408–13413.CrossRefGoogle Scholar
  13. 13.
    Halanych, K.M., Dahlgren, T.G., and McHugh, D., Unsegmented annelids? Possible origins of four lophotrochozoan worm taxa, Integr. Comp. Biol., 2002, vol. 42, no. 3, pp. 678–684.CrossRefGoogle Scholar
  14. 14.
    Halanych, K.M., Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review, Hydrobiologia, 2005, vol. 535, art. ID 297.  https://doi.org/10.1007/s10750-004-1437-6 CrossRefGoogle Scholar
  15. 15.
    Hilário, A., Capa, M., Dahlgren, T.G., et al., New perspectives on the ecology and evolution of siboglinid tubeworms, PLoS One, 2011, vol. 6, no. 2, art. ID e16309.  https://doi.org/10.1371/journal.pone.0016309 CrossRefGoogle Scholar
  16. 16.
    Jones, M.L., On the Vestimentifera, new phylum: Six new species, and other taxa, from hydrothermal vents and elsewhere, Bull. Biol. Soc. Wash., 1985, vol. 6, pp. 117–158.Google Scholar
  17. 17.
    Julian, D., Gaill, F., Wood, E., et al., Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp., J. Exp. Biol., 1999, vol. 202, pp. 2245–2257.PubMedGoogle Scholar
  18. 18.
    Kojima, S., Paraphyletic status of Polychaeta suggested by phylogenetic analysis based on the amino acid sequences of elongation factor-1α, Mol. Phylogenet. Evol., 1998, vol. 9, no. 2, pp. 255–261.CrossRefGoogle Scholar
  19. 19.
    McHugh, D., Molecular evidence that echiurans and pogonophorans are derived annelids, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 15, pp. 8006–8009.CrossRefGoogle Scholar
  20. 20.
    Puth, M.-T., Neuhüuser, M., and Ruxton, G.D., Effective use of Pearson’s product–moment correlation coefficient, Anim. Behav., 2014, vol. 93, pp. 183–189.CrossRefGoogle Scholar
  21. 21.
    Rouse, G.W. and Fauchald, K., The articulation of annelids, Zool. Scr., 1995, vol. 24, no. 4, pp. 269–301.CrossRefGoogle Scholar
  22. 22.
    Rouse, G.W. and Fauchald, K., Cladistics and polychaetes, Zool. Scr., 1997, vol. 26, no. 2, pp. 139–204.CrossRefGoogle Scholar
  23. 23.
    Schulze, A., Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology, Zool. Scr., 2003, vol. 32, no. 4, pp. 321–342.CrossRefGoogle Scholar
  24. 24.
    Webb, M., Lamellibrachia barhami, gen. nov., sp. nov., (Pogonophora), from the Northeast Pacific, Bull. Mar. Sci., 1969, vol. 19, pp. 18–47.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. M. Gantsevich
    • 1
    Email author
  • N. P. Karaseva
    • 1
  • N. N. Rimskaya-Korsakova
    • 1
  • V. V. Malakhov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations