Russian Journal of Marine Biology

, Volume 44, Issue 6, pp 465–470 | Cite as

The Biological Activity of Extracts of Marine Invertebrates from Troitsa Bay (Sea of Japan)

  • S. A. Kozlovskii
  • O. V. Sintsova
  • E. A. Pislyagin
  • E. A. Yurchenko
  • M. V. Pivkin
  • E. V. LeychenkoEmail author


The biological activity of extracts from nine species of marine invertebrates (the phyla Cnidaria, Annelida, Sipunculida, and Nemertea) that inhabit Troitsa Bay (Peter the Great Bay, Sea of Japan) was determined using in vitro and in vivo models. It was found that extracts of marine worms, that is, the polychaete Eularia viridis and sipunculida Phascolostoma agassizii, have an antibacterial effect and reduce the adhesion of macrophages, whereas extracts of the jellyfish Gonionemus vertens exhibit neurotoxic effects and are also able to increase or decrease the adhesion of macrophages, depending on the method of extraction. These marine animals can be a source of antimicrobial, antioxidant, antitumor, and immunostimulating compounds.


invertebrates Cnidaria Annelida Nemertea Sipuncula insectotoxins biologically active compounds 



  1. 1.
    Alonso-del-Rivero, M., Trejo, S., Rodríguez de la Vega, M., et al., A novel metallocarboxypeptidase-like enzyme from the marine annelid Sabellastarte magnifica—a step into the invertebrate world of proteases, FEBS J., 2009, vol. 276, pp. 4875−4890.CrossRefPubMedGoogle Scholar
  2. 2.
    Alonso-del-Rivero, M., Trejo, S., and Reytor, M.L., Tri-domain bifunctional inhibitor of metallocarboxypeptidases A and serine proteinases isolated from marine annelid Sabellastarte magnifica, J. Biol. Chem., 2012, vol. 287, no. 19, pp. 15427−15438.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Andersson, H., Jacobsson, E., Strand, M., et al., α‑Nemertides, a novel family of marine peptide neurotoxins from ribbon worms, 19th World Congress of the IST, Haikou, People’s Republic of China, Oct. 24−31, 2017, p. 138.Google Scholar
  4. 4.
    Bacq, Z., Poisons of nemerteans, Bull. Acad. R. Belg. Cl. Sci., 1936, vol. 22, pp. 1072−1079.Google Scholar
  5. 5.
    Badré, S., Bioactive toxins from stinging jellyfish, Toxicon, 2014, vol. 1, pp. 11−12.Google Scholar
  6. 6.
    Baurain, D., Brinkmann, H., and Philippe, H., Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors?, Mol. Biol. Evol., 2007, vol. 24, no. 1, pp. 6−9.CrossRefPubMedGoogle Scholar
  7. 7.
    Boore, J., Lavrov, D., and Brown, W., Gene translocation links insects and crustaceans, Nature, 1998, vol. 392, pp. 667−668.CrossRefPubMedGoogle Scholar
  8. 8.
    Carmichael, J., Degraff, W.G., Gazdar, A.F., et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 1987, vol. 47, pp. 936−942.PubMedGoogle Scholar
  9. 9.
    Carroll, S., McEvoy, E., Gibson, R., et al., The production of tetrodotoxin-like substances by nemertean worms in conjunction with bacteria, J. Exp. Mar. Biol. Ecol., 2002, vol. 288, pp. 51−63.CrossRefGoogle Scholar
  10. 10.
    Cooper, E., Comparative Immunology, Englewood Cliffs, N.J.: Prentice Hall, 1976, pp. 88, 103, 202, and 274.Google Scholar
  11. 11.
    Florkin, M., Chemical Zoology, vol. 4: Annelida, Echiuria, and Sipuncula, New York: Academic, 1969, pp. 420−437.Google Scholar
  12. 12.
    Glinsky, G., Anti-adhesion cancer therapy, Cancer Metastasis Rev., 1998, vol. 17, pp. 177−185.CrossRefPubMedGoogle Scholar
  13. 13.
    Honma, T., Kawahata, S., Ishida, M., et al., Novel peptide toxins from the sea anemone Stichodactyla haddoni, Peptides, 2008, vol. 29, pp. 536−544.CrossRefPubMedGoogle Scholar
  14. 14.
    Hrzenjak, T., Hrzenjak, M., Kasuba, V., et al., A new source of biologically active compounds—earthworm tissue (Eisenia foetida, Lumbruicus rubelus), Comp. Biochem. Physiol., 1992, vol. 102, pp. 441−447.CrossRefGoogle Scholar
  15. 15.
    Jouiaei, M., Yanagihara, A., and Madio, B., Ancient venom systems: a review on Cnidaria toxins, Toxins, 2015, vol. 7, pp. 2251−2271.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kauschke, E. and Mohrig, W., Cytotoxic activity in the coelomic fluid of the annelid Eisenia foetida, J. Comp. Physiol. B, 1987, vol. 157, pp. 77−83.CrossRefPubMedGoogle Scholar
  17. 17.
    Kem, W., Anabaseine as a molecular model for design of Alpha7 nicotinic receptor agonist drugs, Perspectives in Molecular Toxinology, Ménez, A., Ed., Chichester, England: Wiley, 2002, pp. 297−314.Google Scholar
  18. 18.
    Kuzmenkov, A., Fedorova, I., Vassilevski, A., and Grishin, E., Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments, Biochim. Biophys. Acta, 2013, vol. 1828, no. 2, pp. 724−731.CrossRefPubMedGoogle Scholar
  19. 19.
    Leary, S., Underwood, W., and Anthony, R., AVMA Guidelines for the Euthanasia of Animals: 2013 edition, Shaumburg, Ill.: Am. Vet. Med. Assoc., 2013, p. 67.Google Scholar
  20. 20.
    Lowry, O., Rosebrough, N., Farr, A., et al., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265−275.PubMedGoogle Scholar
  21. 21.
    Mariottini, G.L. and Pane, L., Mediterranean jellyfish venoms: a review on Scyphomedusae, Mar. Drugs, 2010, vol. 8, pp. 1122−1152.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Masuda, A., Baba, T., Dohmae, N., et al., Mucin (qniumucin), a glycoprotein from jellyfish, and determination of its main chain structure, J. Nat. Prod., 2007, vol. 70, pp. 1089−1092.CrossRefPubMedGoogle Scholar
  23. 23.
    Miyazawa, K., Higashiyama, M., Ito, K., et al., Tetrodotoxin in two species of ribbon worm (Nemertini), Lineus fuscoviridis and Tubulanus punctatus, Toxicon, 1988, vol. 26, pp. 867−874.CrossRefPubMedGoogle Scholar
  24. 24.
    Morishige, H., Sugahara, T., Nishimoto, S., et al. Immunostimulatory effects of collagen from jellyfish in vivo, Cytotechnology, 2011, vol. 63, pp. 481−492.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ohta, N., Sato, M., Ushida, K., et al., Jellyfish mucin may have potential disease-modifying effects on osteoarthritis, BMC Biotechnol., 2009, vol. 9, pp. 98.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Popović, M., Grdiša, M., and Hrženjak, T., Glycolipoprotein G-90 obtained from the earthworm Eisenia foetida exerts antibacterial activity, Vet. Arh., 2005, vol. 75, no. 2, pp. 119−128.Google Scholar
  27. 27.
    Regier, J., Shultz, J., Ganley, A., et al., Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence, Syst. Biol., 2008, vol. 57, pp. 920−938.CrossRefPubMedGoogle Scholar
  28. 28.
    Romanenko, L., Uchino, M., Kalinovskaya, N., and Mikhailov, V., Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities, Microbiol. Res., 2008, vol. 163, pp. 633−644.CrossRefPubMedGoogle Scholar
  29. 29.
    Shiomi, K., Honma, T., Idev M., et al., An epidermal growth factor-like toxin and two sodium channel toxins from the sea anemone Stichodactyla gigantean, Toxicon, 2003, vol. 41, pp. 229−236.CrossRefPubMedGoogle Scholar
  30. 30.
    Silchenko, A.S., Kalinovsky, A.I., Avilov, S.A., et al., Triterpene glycosides from the sea cucumber Eupentacta fraudatrix. Structure and biological action of cucumariosides A1, A3, A4, A5, A6, A12 and A15, seven new minor non-sulfated tetraosides and unprecedented 25-keto,25-norholostane aglycone, Nat. Prod. Commun., 2012, vol. 7, no. 4, pp. 517−525.PubMedGoogle Scholar
  31. 31.
    Sintsova, O., Gladkikh, I., Chausova, V., et al., Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor, J. Proteomics, 2018, vol. 173, pp. 12−21.CrossRefPubMedGoogle Scholar
  32. 32.
    Stein, E. and Cooper, E., Carbohydrate and glycoprotein inhibitors of naturally occurring and induced agglutinins in the earthworm Lumbricus terrestris, Comp. Biochem. Physiol., 1983, vol. 76, pp. 197−206.Google Scholar
  33. 33.
    Uliasz, T.F. and Hewett, S.J., A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture, J. Neurosci. Methods, 2000, vol. 100, pp. 157−163.CrossRefPubMedGoogle Scholar
  34. 34.
    Wojdani, A., Stein, E., Alfred, L., and Cooper, E.L., Mitogenic effect of earthworm (Lumbricus terrestris) coelomic fluid on mouse and human lymphocytes, Immunobiology, 1984, vol. 166, pp. 157−167.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhuang, Y., Sun, L., and Li, B., Production of the angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolysates of jellyfish (Rhopilema esculentum) collagen, Food Bioproc. Technol., 2010, vol. 5, pp. 1622−1629.CrossRefGoogle Scholar
  36. 36.
    Zhuang, Y., Sun, L., Zhang Y., and Liu G., Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension, Mar. Drugs, 2012, vol. 10, pp. 417−426.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Kozlovskii
    • 1
  • O. V. Sintsova
    • 1
  • E. A. Pislyagin
    • 1
  • E. A. Yurchenko
    • 1
  • M. V. Pivkin
    • 1
  • E. V. Leychenko
    • 1
    • 2
    Email author
  1. 1.Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.School of Natural Sciences, Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations