Advertisement

Russian Journal of Marine Biology

, Volume 44, Issue 3, pp 232–239 | Cite as

A Comparative Study of Free Amino Acids of the Brown Alga Fucus vesiculosus Linnaeus, 1753 from the Intertidal Zone of the Murman Shore, Barents Sea

  • M. P. Klindukh
  • E. D. Obluchinskaya
Original Papers
  • 8 Downloads

Abstract

The free amino-acid contents of the apical and middle parts of the thallus, as well as the receptacles of fertile and juvenile specimens, of the brown alga Fucus vesiculosus collected from seven different biotopes of the Murman shore, Barents Sea have been studied for the first time. The free amino-acid composition of the studied algae specimens was dominated by alanine, along with aspartic and glutamic acid. The distribution of free amino acids in the thallus of Fucus is uneven and depends on the habitat. The free aminoacid contents in the spring vary considerably between different parts of the thallus; however, certain regular patterns of their distribution are observed. A correlation has been found between the level of some individual amino acids in different parts of the thallus of fertile and juvenile algae and the salinity of the seawater.

Keywords

Fucus algae free amino acids salinity habitat part of the thallus Barents Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atlas of the Barents Sea, an electronic reference guide to oceanographical characteristics of the Barents Sea, 2005. https://doi.org/www.aari.ru/resources/a0013_17/barents/atlas_barents_sea/browse_atlas.htm.Accessed June 14, 2017.Google Scholar
  2. 2.
    Biokhimiya rastenii (Biochemistry of Plants), Rostovon-Don: Feniks, 2004.Google Scholar
  3. 3.
    Imbs, T.I., Chaikina, E.L., Dega, L.A., et al., A comparative study of the chemical composition of ethanol extracts from brown algae and their effect on growth of seedlings and yielding capacity of the soybean, Glycine max (L.) Merr., Khim. Rastit. Syrya, 2010, no. 1, pp. 143–148.Google Scholar
  4. 4.
    Klindukh, M.P., A study of free amino acids of brown and red algae from the Barents Sea by the HPLC method, Mezhdunarodnaya nauchnaya konferentsiya k 80-letiyu Murmanskogo morskogo biologicheskogo institute, Kol’skogo Nauchnogo Tsentra, Rossiiskoi Akademii Nauk “Arkticheskoye morskoye prirodopol’zovaniye v XXI veke—sovremennyi balans nauchnykh traditsiy i innovatsiy,” Tezisy dokladov (Int. Sci. Conf. Dedicated to 80th Anniversary of Murmansk Marine Biological Institute, Kola Scientific Center, Russian Academy of Sciences “Arctic Marine Nature Management in 21 Century: Modern Balance of Scientific Traditions and Innovations,” Abstracts of Papers), Apatity: Kol’sky Nauchn. Tsentr Ross. Akad. Nauk, 2015, pp. 107–109.Google Scholar
  5. 5.
    Klindukh, M.P., Influence of age and habitat on the free amino acid composition and content of the brown alga Fucus vesiculosus L., Materialy mezhdunarodnoi nauchnoi konferentsii i molodezhnoi nauchnoi konferentsii pamyati chlena-korrespondenta RAN D.G. Matishova “Okruzhayushchaya sreda i chelovek. Sovremennye problemy genetiki, selektsii i biotekhnologii” (Proc. Int. Sci. Conf. and Youth Sci. Conf. in Memoriam of Corr. Member Russ. Acad. Sci. D.G. Matishov “The Environment and the Human. The Modern Problems of Genetics, Breeding and Biotechnology”), Rostov-on-Don: Yuzhny Nauchn. Tsentr, 2016, pp. 295–297.Google Scholar
  6. 6.
    Klindukh, M.P., Common free amino acids in the apical and middle parts of the thallus of the brown alga Fucus vesiculosus, Materialy 35-oi konferentsii molodykh uchenykh Murmanskogo morskogo biologicheskogo institute kol’skogo nauchnogo tsentra, Rossiiskoi Akademii Nauk posvyashchennoi godu ekologii Rossii “Issledovaniya ekosistem morei Arktiki” (Proc. 35th Conf. of Young Scientists of Murmansk Marine Biological Instirute, Kola Scientific Center, Russian Academy of Scientists Dedicated to the Year of Ecology in Russia “Investigation of Ecosystems in the Arctic Seas”), Murmansk: Murm. Morsk. Biol. Inst., Kol’sky Nauchn. Tsentr, Ross. Akad. Nauk, 2017, pp. 39–44.Google Scholar
  7. 7.
    Klindukh, M.P. and Obluchinskaya, E.D., The free amino acid content of different parts of the thallus and during the ontogenesis of the brown alga Fucus vesiculosus, Materialy mezhdunarodnoi nauchno-praktichekoi konferentsii “Sovremennye ekologo-biologicheskiye i khimicheskiye issledovaniya, tekhnika i tekhnologiya proizvodstv” (Proc. Int. Sci.-Pract. Conf. “Modern Ecological, Biological and Chemical Studies, Techniques and Technology of Production”), Murmansk: Murm. Gos. Tech. Univ., 2015, pp. 222–226.Google Scholar
  8. 8.
    Klindukh, M.P., Obluchinskaya, E.D., and Matishov, G.G., Seasonal changes in the mannitol and proline contents of the brown alga Fucus vesiculosus L. on the Murman coast of the Barents Sea, Dokl. Biol. Sci., 2011, vol. 441, no. 1, pp. 373–376.CrossRefPubMedGoogle Scholar
  9. 9.
    Klochkova, N.G. and Berezovskaya, V.A., Vodorosli kamchatskogo shel’fa. Rasprostranenie, biologiya, khimicheskii sostav (Algae of the Kamchatka Shelf. Distribution, Biology, Chemical Composition), Vladivostok: Dal’nauka, 1997.Google Scholar
  10. 10.
    Krupnova, T.N., Features of development of the sporiferous tissue in Japanese kelp under the effect of changing environmental conditions, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2002, vol. 130, nos. 1–2, pp. 474–482.Google Scholar
  11. 11.
    Kuznetsov, L.L. and Shoshina, E.V., Fitotsenozy Barentseva morya (fiziologicheskiye i strukturnye kharakteristiki) (Phytocenoses of the Barents Sea (Physiological and Structural Characteristics)), Apatity: Kol’sk. Nauchn. Tsentr, Ross. Akad. Nauk, 2003.Google Scholar
  12. 12.
    Podkorytova, A.V., Dynamics of some free amino acids in Japanese kelp during growth and formation of reproductive tissue, Issledovaniya po tekhnologii rybnykh produktov (Studies on Technology of Fish Foods), Vladivostok: TINRO, 1980, pp. 53–57.Google Scholar
  13. 13.
    Podkorytova, A.V., Substantiation of the use of marine brown algae as a source of iodine and other biologically active substances, Tr. Vseross. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2004, vol. 143, pp. 136–142.Google Scholar
  14. 14.
    Statsenko, A.P., Ivanov, A.I., and Konkina, E.E., Biochemical testing of environmental pollution, in Sovremennye problemy ekologii (Modern Problems of Ecology), Moscow: Mosk. Gos. Univ., 2007, pp. 650–663.Google Scholar
  15. 15.
    Tkach, A.V. and Obluchinskaya, E.D., Sterols and polyphenols of fucoids from the Murmansk coast of the Barents Sea, Vestn. Murm. Gos. Tekh. Univ., 2017, vol. 20, no. 2, pp. 326–335.Google Scholar
  16. 16.
    Angell, A.R., Mata, L., de Nys, R., and Paul, N.A., Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta), J. Phycol., 2014, vol. 50, pp. 216–226.CrossRefPubMedGoogle Scholar
  17. 17.
    Citharel, J. and Villereit, S., Recherches sur les constituants azotes des algues marines. II-Les principaux acides amines de Fucus spiralis L. et leur variation au cours de la croissance de l’algue, Bull. Soc. Fr. Physiol. Veg., 1965, no. 4, pp. 343–350.Google Scholar
  18. 18.
    Dawczynski, C., Schubert, R., and Jahreis, G., Amino acids, fatty acids, and dietary fibre in edible seaweed products, Food Chem., 2007, vol. 103, pp. 891–899.CrossRefGoogle Scholar
  19. 19.
    Fujiwara-Arasaki, T., Mino, N., and Kuroda, M., The protein value in human nutrition of edible marine algae in Japan, Hydrobiologia, 1984, vols. 116–117, pp. 513–516.CrossRefGoogle Scholar
  20. 20.
    Kakinuma, M., Coury, D.A., Kuno, Y., Itoh, S., et al., Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta), Mar. Biol., 2006, vol. 149, pp. 97–106.CrossRefGoogle Scholar
  21. 21.
    Lüning, K., Schmitz, K., and Willenbrink, J., CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina, Mar. Biol., 1973, vol. 23, pp. 275–281.CrossRefGoogle Scholar
  22. 22.
    Mohsen, A.F., Kharboush, A.M., Khaleafa, A.F., et al., Amino acid pattern and seasonal variation in some marine algae from Alexandria, Bot. Mar., 1975, vol. 18, pp. 167–178.CrossRefGoogle Scholar
  23. 23.
    Munda, I.M., Differences in amino acid composition of estuarine and marine fucoids, Aquat. Bot., 1977, vol. 3, pp. 273–280.CrossRefGoogle Scholar
  24. 24.
    Munda, I.M. and Garrasi, C., Salinity-induced changes of nitrogenous constituents in Fucus vesiculosus (Phaeophyceae), Aquat. Bot., 1978, vol. 4, pp. 347–351.CrossRefGoogle Scholar
  25. 25.
    Peinado, I., Girón, J., Koutsidis, G., and Ames, J.M., Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds, Food Res. Int., 2014, vol. 66, pp. 36–44.CrossRefGoogle Scholar
  26. 26.
    Tabakaeva, O.V. and Tabakaev, A.V., Amino acids from potentially commercial Far-East brown algae Costaria costata and Undaria pinnatifida, Chem. Nat. Compd., 2016, vol. 52, no. 2, pp. 376–378.CrossRefGoogle Scholar
  27. 27.
    Zhou, A.Y., Robertson, J., Hamid, N., et al., Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts, Food Chem., 2015, vol. 186, pp. 319–325.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Murmansk Marine Biological Institute, Kola Scientific CenterRussian Academy of SciencesMurmanskRussia

Personalised recommendations